The Cancer Pharmacology (CP) Program has the overall goal to discover and develop more effective cancer treatments through pharmacology-based preclinical research. The ultimate aim is to improve patient outcomes through innovative and integrative research in cancer target biology, chemical biology, medicinal chemistry, pharmaceutics and biomedical engineering. Defining molecular functions of cancer targets and leveraging this knowledge to drive translational bench-to-bedside and bedside-to-bench research in drug discovery and delivery are signature Program features that span the Rutgers/Princeton Consortium. CP provide a platform for productive, collaborative and impactful science and discoveries. CP has 37 members from 18 Departments, 7 Schools, 2 Universities. The Program is well funded with $16.5M annual direct peer-reviewed grant support, $6.1M of which is cancer-focused (13 R01 equivalent, and 6 Multi-PI). CP members published 746 papers (up from 522 in 2004-10), 29% of which are collaborative (18% intra- and 18% inter-programmatic) with 22% in top-tier journals and 53% collaborative with other institutions. This represents an increase in both total and collaborative publications compared with last project period. Impactful science includes regulation of growth pathways by GRM1 in melanoma, novel mechanisms of amino acid signaling by mTOR in colorectal cancer, and epigenetic regulation in pediatric glioblastomas/sarcomas. CP members revealed key roles of mTOR and antioxidant pathways in cardiac protection and chronic pain management, which have implications for reducing cardiac toxicity, a dose-limiting side effect of chemo-therapy, and for improving analgesia in advanced stage cancer patients. Based on fundamental insights into the biology of molecular targets, CP members determined the mode of action for riluzole (a repurposed ALS drug) targeting GRM1 in melanoma and identified determining factors for therapeutic response for rapamycin. CP members focused on development of novel therapeutics and drug delivery technologies, and identified novel anticancer agents including a compound that restores mutant p53 function, BMI-1 inhibitors, and prodrugs for riluzole and the CINJ-developed topoisomerase 1 inhibitor Genz-644282. They developed innovative tumor-targeting nanocarriers containig multiple therapeutic modalities (small molecules, toxins, nucleic acids, and peptides/antibodies) and imaging enhancers (e.g., rare earth elements and Mn3O4), enabling cancer detection and treatment. CP members work with other CINJ Programs, particularly the Clinical Investigations and Precision Therapeutics Program (CIPT), to translate bench discoveries to clinical trials, contributing significantly to CINJ?s translational pipeline. They also use feedback from trials to gain further insight into target biology and mechanisms of treatment response for agents such as riluzole to improve therapeutic approaches.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rbhs -Cancer Institute of New Jersey
New Brunswick
United States
Zip Code
Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel et al. (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450-459
Harris, Holly R; Babic, Ana; Webb, Penelope M et al. (2018) Polycystic Ovary Syndrome, Oligomenorrhea, and Risk of Ovarian Cancer Histotypes: Evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 27:174-182
Laval, K; Vernejoul, J B; Van Cleemput, J et al. (2018) Virulent Pseudorabies Virus Infection Induces a Specific and Lethal Systemic Inflammatory Response in Mice. J Virol 92:
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430
Lalani, Almin I; Zhu, Sining; Xie, Ping (2018) Characterization of Thymus-dependent and Thymus-independent Immunoglobulin Isotype Responses in Mice Using Enzyme-linked Immunosorbent Assay. J Vis Exp :
Warner, Wayne A; Lee, Tammy Y; Badal, Kimberly et al. (2018) Cancer incidence and mortality rates and trends in Trinidad and Tobago. BMC Cancer 18:712
Qin, Bo; Llanos, Adana A M; Lin, Yong et al. (2018) Validity of self-reported weight, height, and body mass index among African American breast cancer survivors. J Cancer Surviv 12:460-468
Farber, Nicholas J; Radadia, Kushan D; Singer, Eric A (2018) Accuracy of Nodal Staging and Outcomes of Lymphadenectomy for Non-metastatic Renal Cell Carcinoma: An Analysis of the National Cancer Database. Bladder Cancer 4:S14-S15
Poillet-Perez, Laura; Xie, Xiaoqi; Zhan, Le et al. (2018) Autophagy maintains tumour growth through circulating arginine. Nature 563:569-573
Chan, Chang S; Laddha, Saurabh V; Lewis, Peter W et al. (2018) ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun 9:4158

Showing the most recent 10 out of 775 publications