The mission of the Genome Engineering Shared Resource (GESR) is to provide state-of-the-art services in precision genome engineering of mammalian cell lines to Masonic Cancer Center (MCC) researchers. Specifically, the GESR is capable of genetically engineering human cell lines tailored to each principal investigator's (PI's) individual specifications. These services include, but are not limited to 1) single guide RNA (sgRNA) design; 2) sgRNA validation; 3) sgRNA expression vector construction; 4) design of CRISPR (Clustered Regularly Interspersed Palindromic Repeats)-associated 9 (Cas9) protein expression vector reagents; 5) simple, single-locus knockouts for non-essential genes; 6) construction of conditionally null alleles for essential genes; 7) construction of single-amino-acid knock-in mutations; 8) construction of single- nucleotide knock-ins; 9) construction of multi-allelic knockout cell lines; and 10) in collaboration with the Mouse Genetics Laboratory (MGL) Shared Resource, construction of RNA- and protein-based CRISPR/Cas9 reagents for the generation of transgenic mice. These services are essential to the mission of the MCC because genetic alteration of human cancer cell lines allows PIs the ability to design mechanistic and therapeutic experiments related to the characterization and investigation of specific cancers. Moreover, although the demand for genetically modified human cell lines is high, the steps involved in the process of genome editing are still technically challenging and time consuming and demand resources and a level of expertise not found in most clinical laboratories. The GESR is capable of providing these services at a very cost-effective price (well below most commercial sources) and can usually generate the requisite reagent or cell line as quickly (or more quickly) than most commercial enterprises. The GESR is co-led by Drs. Eric A. Hendrickson and Branden S. Moriarity and coordinated by Brian Ruis with support from 2 laboratory personnel. The GESR has been in operation since October 2015.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA077598-23
Application #
10086442
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1998-06-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
23
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Xu, Bin; Magli, Alessandro; Anugrah, Yoska et al. (2018) Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 183:54-66
Nikodemova, Maria; Yee, Jeremiah; Carney, Patrick R et al. (2018) Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environ Int 113:249-258
Rashidi, Armin; Shanley, Ryan; Anasetti, Claudio et al. (2018) Analysis of BMT CTN-0201 and -0901 samples did not reproduce the reported association between recipient REG3A rs7588571 and chronic GVHD. Bone Marrow Transplant :
Lin, Lifeng; Chu, Haitao (2018) Bayesian multivariate meta-analysis of multiple factors. Res Synth Methods 9:261-272
Mondragon-Gonzalez, Ricardo; Perlingeiro, Rita C R (2018) Recapitulating muscle disease phenotypes with myotonic dystrophy 1 induced pluripotent stem cells: a tool for disease modeling and drug discovery. Dis Model Mech 11:
Kim, J-H; Frantz, A M; Sarver, A L et al. (2018) Modulation of fatty acid metabolism and immune suppression are features of in vitro tumour sphere formation in ontogenetically distinct dog cancers. Vet Comp Oncol 16:E176-E184
Jin, Jin; Zhang, Lin; Leng, Ethan et al. (2018) Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Stat Med 37:3214-3229
Pierpont, Elizabeth I; Hudock, Rebekah L; Foy, Allison M et al. (2018) Social skills in children with RASopathies: a comparison of Noonan syndrome and neurofibromatosis type 1. J Neurodev Disord 10:21
Carlson, Erik S; Upadhyaya, Pramod; Villalta, Peter W et al. (2018) Analysis and Identification of 2'-Deoxyadenosine-Derived Adducts in Lung and Liver DNA of F-344 Rats Treated with the Tobacco-Specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of its Metabolite 4-(Methylnitrosamino)-1-(3-p Chem Res Toxicol 31:358-370
Lin, Lifeng; Chu, Haitao; Murad, Mohammad Hassan et al. (2018) Empirical Comparison of Publication Bias Tests in Meta-Analysis. J Gen Intern Med 33:1260-1267

Showing the most recent 10 out of 1013 publications