Carcinogenesis and Chemoprevention Program Summary The scientific goals of the Carcinogenesis and Chemoprevention Program are to identify biomarkers for tobacco-related cancer risk; and to understand how environmental and dietary chemicals contribute to carcinogenesis through specific biochemical pathways and to apply this knowledge for individualized cancer risk stratification and cancer prevention. The ultimate objective is to translate these findings into investigator- initiated clinical trials that change public policy and health care. To achieve our goals, we have successful, mature research programs which address the following aims: 1) to characterize the harmful effects of tobacco chemicals and products and develop biomarkers for cancer risk stratification in clinical and epidemiological studies; 2) to understand how chemicals in food and medicine and specific biochemical pathways may contribute to carcinogenesis; 3) to identify food products, as well as natural and synthetic chemicals, that reduce cancer risk. Drs. Lisa Peterson and Frank Ondrey lead the Program, which has 24 members, representing 14 departments and 8 schools or colleges (College of Biological Sciences; College of Food, Agriculture and Natural Resources; College of Pharmacy; College of Science and Engineering; College of Veterinary Medicine; Hormel Institute; Medical School, and School of Public Health). In the last budget year, these members were supported by $5.6 million in direct costs from the National Cancer Institute; funding from all peer-reviewed sources totaled $8.2 million in direct costs. Since 2013, Program members have published 628 papers, 20% of which resulted from intraprogrammatic collaborations, 20% from interprogrammatic collaborations, and 87% from external collaborations. Since 2013, 53 clinical trials in all clinical research categories have opened under this programmatic area and have accrued 7728 subjects. The Masonic Cancer Center (MCC) has provided substantial value to the program, including access to shared resources, recruiting 3 new faculty, funding of 10 pilot projects ($382,500 awarded), 1 research retreat, 1 strategic planning meeting, 24 meetings on recent Program member research projects, 2 special seminars, and 2 meetings to discuss specific requests for proposals from the NIH. A monthly interprogrammatic translational biomarker focus group brings together population scientists and clinicians with basic research groups developing specific biomarkers. The Program's future direction fits well within the MCC's strategic plan. We will continue the translation of our basic research into chemoprevention clinical trials (Scientific Priority for Growth 3- SPG3). We are actively using biomarkers to understand carcinogenesis and to develop strategies to personalize cancer screening and treatments (SPG4). Program members are actively involved in the planning of the 10,000 Family cohort (SPG5), and this resource will be invaluable for the translation of our science to the catchment area. Lastly, we plan to use tobacco-related biomarkers to develop individually targeted smoking cessation and screening protocols in Minnesota's minority populations who have a disproportionate cancer burden (SPG6).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA077598-23
Application #
10086446
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1998-06-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
23
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Nikodemova, Maria; Yee, Jeremiah; Carney, Patrick R et al. (2018) Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environ Int 113:249-258
Xu, Bin; Magli, Alessandro; Anugrah, Yoska et al. (2018) Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 183:54-66
Lin, Lifeng; Chu, Haitao (2018) Bayesian multivariate meta-analysis of multiple factors. Res Synth Methods 9:261-272
Rashidi, Armin; Shanley, Ryan; Anasetti, Claudio et al. (2018) Analysis of BMT CTN-0201 and -0901 samples did not reproduce the reported association between recipient REG3A rs7588571 and chronic GVHD. Bone Marrow Transplant :
Kim, J-H; Frantz, A M; Sarver, A L et al. (2018) Modulation of fatty acid metabolism and immune suppression are features of in vitro tumour sphere formation in ontogenetically distinct dog cancers. Vet Comp Oncol 16:E176-E184
Mondragon-Gonzalez, Ricardo; Perlingeiro, Rita C R (2018) Recapitulating muscle disease phenotypes with myotonic dystrophy 1 induced pluripotent stem cells: a tool for disease modeling and drug discovery. Dis Model Mech 11:
Jin, Jin; Zhang, Lin; Leng, Ethan et al. (2018) Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Stat Med 37:3214-3229
Pierpont, Elizabeth I; Hudock, Rebekah L; Foy, Allison M et al. (2018) Social skills in children with RASopathies: a comparison of Noonan syndrome and neurofibromatosis type 1. J Neurodev Disord 10:21
Carlson, Erik S; Upadhyaya, Pramod; Villalta, Peter W et al. (2018) Analysis and Identification of 2'-Deoxyadenosine-Derived Adducts in Lung and Liver DNA of F-344 Rats Treated with the Tobacco-Specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of its Metabolite 4-(Methylnitrosamino)-1-(3-p Chem Res Toxicol 31:358-370
Lin, Lifeng; Chu, Haitao; Murad, Mohammad Hassan et al. (2018) Empirical Comparison of Publication Bias Tests in Meta-Analysis. J Gen Intern Med 33:1260-1267

Showing the most recent 10 out of 1013 publications