The scientific goals of the Genetic Mechanisms Program are to define and understand the genetic changes that occur during cancer development, to understand the genesis of those changes, and to use gene transfer technology to treat cancer. These goals include defining the specific changes that drive tumor initiation and progression, lead to resistance to tumor treatment, and influence cancer susceptibility. To achieve these goals, we feature strong research programs focused on the following Aims: 1) To identify cancer susceptibility genes, DNA mutators, and drivers of metastasis to develop new biomarkers for cancer progression and drug targets for therapeutic intervention; 2) To understand the mechanisms that maintain genome stability, including pathways that control replication stress and DNA damage tolerance; and 3) To develop a new generation of viral and nonviral cancer therapeutics that will be tested in preclinical animal models. The Genetic Mechanisms Program is a basic science program led by Anja-Katrin Bielinsky, PhD, and new co-leader Masato Yamamoto, MD, PhD, and has 43 members, representing 19 departments and 8 schools or colleges. Dr. Bielinsky oversees the early phases of translation, and Dr. Yamamoto assists with later phases and facilitates active collaborations with clinicians outside GM who are experts in clinical trials. For the last budget year, GM members were supported by $2.9 million in direct costs from the National Cancer Institute, other NIH funding totaled $7.2 million, total peer-reviewed funding was $10.95 million, and cancer-related funding from all sponsored sources totaled $15.2 in direct costs. Since 2013, Program members have published 634 papers, 17% of which resulted from intraprogrammatic collaborations, 20% from interprogrammatic collaborations, and 85% from external collaborations. Over the past funding cycle, we enhanced our team-building efforts to promote research in areas that span multiple themes. Uncovering the mechanisms that promote drug resistance in solid tumors is one such area that aligns strongly with the Masonic Cancer Center Strategic Plan Scientific Priority for Growth (SPG2) of enhancing functional genomics strategies to further our understanding of cancer and develop new therapeutic avenues. Major accomplishments include 1) validation of novel biomarkers that predict progression-free survival in solid tumors, 2) uncovering druggable targets in osteosarcoma, 3) generating functional genomics pipelines that allow for the systematic identification of drug- resistance pathways, and 4) generating a second-generation suite of oncolytic viruses that will improve treatment of patients in our catchment area. The Masonic Cancer Center has provided substantial value to the Program, including access to shared resources, recruitment of new faculty, funding of 26 pilot projects for nearly $1M, annual research retreats, monthly Program meetings, weekly seminars, and a weekly newsletter to facilitate collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA077598-23
Application #
10086449
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1998-06-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
23
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Xu, Bin; Magli, Alessandro; Anugrah, Yoska et al. (2018) Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 183:54-66
Nikodemova, Maria; Yee, Jeremiah; Carney, Patrick R et al. (2018) Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environ Int 113:249-258
Rashidi, Armin; Shanley, Ryan; Anasetti, Claudio et al. (2018) Analysis of BMT CTN-0201 and -0901 samples did not reproduce the reported association between recipient REG3A rs7588571 and chronic GVHD. Bone Marrow Transplant :
Lin, Lifeng; Chu, Haitao (2018) Bayesian multivariate meta-analysis of multiple factors. Res Synth Methods 9:261-272
Mondragon-Gonzalez, Ricardo; Perlingeiro, Rita C R (2018) Recapitulating muscle disease phenotypes with myotonic dystrophy 1 induced pluripotent stem cells: a tool for disease modeling and drug discovery. Dis Model Mech 11:
Kim, J-H; Frantz, A M; Sarver, A L et al. (2018) Modulation of fatty acid metabolism and immune suppression are features of in vitro tumour sphere formation in ontogenetically distinct dog cancers. Vet Comp Oncol 16:E176-E184
Jin, Jin; Zhang, Lin; Leng, Ethan et al. (2018) Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Stat Med 37:3214-3229
Pierpont, Elizabeth I; Hudock, Rebekah L; Foy, Allison M et al. (2018) Social skills in children with RASopathies: a comparison of Noonan syndrome and neurofibromatosis type 1. J Neurodev Disord 10:21
Carlson, Erik S; Upadhyaya, Pramod; Villalta, Peter W et al. (2018) Analysis and Identification of 2'-Deoxyadenosine-Derived Adducts in Lung and Liver DNA of F-344 Rats Treated with the Tobacco-Specific Carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of its Metabolite 4-(Methylnitrosamino)-1-(3-p Chem Res Toxicol 31:358-370
Lin, Lifeng; Chu, Haitao; Murad, Mohammad Hassan et al. (2018) Empirical Comparison of Publication Bias Tests in Meta-Analysis. J Gen Intern Med 33:1260-1267

Showing the most recent 10 out of 1013 publications