Small Animal Cancer Imaqina Core Small laboratory animal models such as mice, rats and hamsters are widely used throughout the cancer research community at Washington University. Indeed, with the recent revolution in molecular biology, transgenic laboratory animal models, in particular, mice have become an indispensable part of the cancer research armamentarium. Animal models of cancer, however, can present the researcher with significant challenges in deciding how best to evaluate or analyze for the characteristics or effects of interest. Most often, for example, one wishes to follow each of the individual subjects that make up a sample population over an extended time period during which various procedures are carried out. Thus, invasive and/or destructive procedures, especially those that require sacrifice of the subject, are prohibitive. Under these circumstances, nondestructive imaging modalities, such as magnetic resonance imaging, positron emission tomography, and optical imaging are especially valuable. The goals and specific aims of the Small Animal Cancer Imaging Core remain essentially as initially described, namely to bring to the Washington University and St. Louis region cancer research communities a resource that offers state-of-the-art small animal magnetic resonance imaging, positron emission tomography, and optical imaging. As described in this document, optical imaging is being added as a new modality to the Core. The attributes of optical imaging complement those of positron emission tomography and magnetic resonance imaging. In particular, optical imaging offers extremely high signal detection sensitivity with target-specific (molecular) labeling while avoiding the difficulties inherent with radionuciides. Optical Imaging faces challenges in probing deep lying structures, a strength of PET, and in achieving high spatial resolution, a strength of MRI. Thus, the three modalities are complementary, rather than redundant, and offer great opportunities for multi-modal assessment of small animal cancer models.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-07
Application #
7497935
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
7
Fiscal Year
2007
Total Cost
$309,335
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Olfson, Emily; Bloom, Joseph; Bertelsen, Sarah et al. (2018) CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol 23:437-447
Betleja, Ewelina; Nanjundappa, Rashmi; Cheng, Tao et al. (2018) A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife 7:
Chen, Li-Shiun; Horton, Amy; Bierut, Laura (2018) Pathways to precision medicine in smoking cessation treatments. Neurosci Lett 669:83-92
Celik, Hamza; Koh, Won Kyun; Kramer, Ashley C et al. (2018) JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell 34:741-756.e8
Kabir, Ashraf Ul; Lee, Tae-Jin; Pan, Hua et al. (2018) Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3:
Hirbe, Angela C; Jennings, Jack; Saad, Nael et al. (2018) A Phase II Study of Tumor Ablation in Patients with Metastatic Sarcoma Stable on Chemotherapy. Oncologist 23:760-e76
Jenkins, Wiley D; Gilbert, David; Chen, Li-Shiun et al. (2018) Finding paths with the greatest chance of success: enabling and focusing lung cancer screening and cessation in resource-constrained areas. Transl Lung Cancer Res 7:S261-S264
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858
Smith, Lee; Ae Lee, Jung; Mun, Junbae et al. (2018) Levels and patterns of self-reported and objectively-measured free-living physical activity among prostate cancer survivors: A prospective cohort study. Cancer :
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 11:

Showing the most recent 10 out of 1244 publications