Eleven years ago, a decision was made to promote tumor immunology research at our institution by including a tumor immunology program as an integral component of a newly forming NCI accredited Comprehensive Cancer Center. This strategy has yielded significant success and today the number of laboratories at Washington University performing tumor immunology related research has risen significantly. More importantly, the last six years have seen an even more significant rise in translational and/or clinical tumor immunology research. Based on the advances in our understanding of immune system-tumor interactions that have occurred over the last 6 years and the research strengths/interests of our program members, the efforts ofthe Tumor Immunology Program are now focused into four thematic areas: (1) the molecular basis of immune recognition of cancer, (2) mechanisms underiying development of host protective, immune effector functions (3) pro-tumorigenic inflammation and immunosuppression and (4) tumor immunotherapy. The long-range goal ofthe Immunology Program is to encourage development of cutting-edge tumor immunology research and facilitate its direct translation into novel diagnostic or immunotherapeutic protocols. Toward these ends, the following four immediate goals will be pursued: (1) continued development of new experimental tumor models using transgenic and gene-targeted mice that more closely recapitulate clinical aspects of human cancer, (2) definition of the structures/antigens of tumors that are the targets of innate and adaptive immune recognition and exploration of mechanisms to enhance the sensitivity/specificity ofthe recognition process, (3) elucidation ofthe roles of innate and adaptive immune response components in either promoting or suppressing anti-tumor immune responses, and (4) explore new avenues to increase the number of inter-departmental and/or collaborative tumor immunology research projects. The program will achieve these goals by continuing to sponsor a number of interactive scientific forums for its members and their research teams and by employing the resources of the Siteman Cancer Center and its cores to encourage the active and interactive participation of both its basic and clinically oriented members. The Tumor Immunology Research Program currently consists of 28 members from 5 departments and 1 school. It has $2,832,508 in NCI funding and $9,939,175 in other peer reviewed support. This is a highly productive program; publishing 451 publications in the last funding period (2004- 2009) of which 11% were intra-programmatic and 2 1% were inter-programmatic.

Public Health Relevance

Before we can use the power and specificity ofthe immune system against cancer we need to learn more about how immunity controls or promotes cancer and how the presence of a tumor affects the function of the immune system. We also need to determine what types of immunotherapy are best suited for particular types of cancer. This program will use the profound immunological and clinical expertise of our members to translate basic discoveries in tumor immunology to more effective cancer diagnostics and/or therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA091842-11S1
Application #
8530554
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
11
Fiscal Year
2012
Total Cost
$2,779
Indirect Cost
$951
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Betleja, Ewelina; Nanjundappa, Rashmi; Cheng, Tao et al. (2018) A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife 7:
Chen, Li-Shiun; Horton, Amy; Bierut, Laura (2018) Pathways to precision medicine in smoking cessation treatments. Neurosci Lett 669:83-92
Celik, Hamza; Koh, Won Kyun; Kramer, Ashley C et al. (2018) JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell 34:741-756.e8
Olfson, Emily; Bloom, Joseph; Bertelsen, Sarah et al. (2018) CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol 23:437-447
Hirbe, Angela C; Jennings, Jack; Saad, Nael et al. (2018) A Phase II Study of Tumor Ablation in Patients with Metastatic Sarcoma Stable on Chemotherapy. Oncologist 23:760-e76
Jenkins, Wiley D; Gilbert, David; Chen, Li-Shiun et al. (2018) Finding paths with the greatest chance of success: enabling and focusing lung cancer screening and cessation in resource-constrained areas. Transl Lung Cancer Res 7:S261-S264
Kabir, Ashraf Ul; Lee, Tae-Jin; Pan, Hua et al. (2018) Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3:
Smith, Lee; Ae Lee, Jung; Mun, Junbae et al. (2018) Levels and patterns of self-reported and objectively-measured free-living physical activity among prostate cancer survivors: A prospective cohort study. Cancer :
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 11:
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858

Showing the most recent 10 out of 1244 publications