The Biomedical Technology Program harnesses the expertise of scientists and engineers in collaboration with clinicians to develop new technologies, instruments, methods and algorithms that can be used for cancer screening, detection, diagnosis, treatment or treatment monitoring. The program draws primarily on science and engineering expertise from four key components, the Departments of Biomedical Engineering and Radiology at UC Davis, the NSF Center for Biophotonics Science and Technology (CBST), and the Lawrence Livermore National Laboratory (LLNL). In addition, clinical members of the program, from both the Medical School and School of Veterinary Medicine, with an expertise in radiology, radiafion oncology and surgery, are critical in guiding and supporting translational activities. Core themes of the program are technologies for cancer research and diagnosis, whole-body and organ imaging technologies, therapeutic technologies, biomarker discovery, and biosensors. These technologies span research, preclinical and clinical applications and include active collaborations with industry. They also cover spatial scales ranging from single molecules, through cells and tissues, to the whole-body level. The goals of the Biomedical Technology Program include: 1) create an environment that encourages development of technologies to address critical questions in cancer research and cancer care, 2) foster interactions between engineers, physicists and chemists with cancer biologists and physicians to guide the development process, 3) catalyze interactions to enable testing and validation of these technologies in pre-clinical models of cancer and in clinical settings;4) make technologies accessible through collaboration with cancer researchers and clinicians in other Cancer Center programs or via the shared resources as appropriate and 5) encourage interactions with industry that can lead to broader dissemination and adoption of these technologies. The program has 36 members from 10 different departments of UC Davis and 6 departments of LLNL. It has 18 NCl-funded projects for $3.2 million ADC (total peer-reviewed funding, $8.8 million ADC). The group has 869 publications for the last funding period;22% are inter-programmatic and 11% are intra-programmatic.

Public Health Relevance

This program brings together individuals from very different disciplines so that discoverise in the worlds of physics, mathematics, and engineering can through interactions with individuals in the medical and vet school be utilized to improve all aspects of the cancer continuum from prevention to cure.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743644
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$22,221
Indirect Cost
$7,744
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Dou, John; Schmidt, Rebecca J; Benke, Kelly S et al. (2018) Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation. Epigenetics 13:108-116
Couto, K M; Moore, P F; Zwingenberger, A L et al. (2018) Clinical characteristics and outcome in dogs with small cell T-cell intestinal lymphoma. Vet Comp Oncol 16:337-343
Xue, Xiangdong; Huang, Yee; Wang, Xinshuai et al. (2018) Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 161:203-215
Ho, Pui Yan; Duan, Zhijian; Batra, Neelu et al. (2018) Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy. J Pharmacol Exp Ther 365:494-506
Zuo, Yang; Qi, Jinyi; Wang, Guobao (2018) Relative Patlak plot for dynamic PET parametric imaging without the need for early-time input function. Phys Med Biol 63:165004
McGee, Heather M; Daly, Megan E; Azghadi, Sohelia et al. (2018) Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 101:1259-1270
Klapheke, Amy; Yap, Stanley A; Pan, Kevin et al. (2018) Sociodemographic disparities in chemotherapy treatment and impact on survival among patients with metastatic bladder cancer. Urol Oncol 36:308.e19-308.e25
Pol, Arjan; Renkema, G Herma; Tangerman, Albert et al. (2018) Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat Genet 50:120-129
Wang, Yuru; Park, SeHee; Beal, Peter A (2018) Selective Recognition of RNA Substrates by ADAR Deaminase Domains. Biochemistry 57:1640-1651
Campbell, Mel; Watanabe, Tadashi; Nakano, Kazushi et al. (2018) KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation. Nat Commun 9:49

Showing the most recent 10 out of 836 publications