The UC Davis Cancer Center Animal Imaging (CCAl) Shared Resource addresses the growing importance of anatomic, functional and molecular imaging in cancer research by providing Cancer Center researchers access to state-of-the-art imaging equipment, novel targeted imaging tracers, experienced technical support personnel and support for data acquisition and analysis. The CCAl shared resource includes an unparalleled array of small and large animal (clinical) imaging technologies for minimally invasive and non-destructive morphologic and physiologic imaging. The resource is comprised of two inter-related facilities within the Department of Biomedical Engineering and the School of Veterinary Medicine Teaching Hospital that house a microPET, a cyclotron and radiopharmacy, gamma camera, small animal and large animal helical CT, clinical (1.5T) and high-field (7.0T) MRI, optical (bioluminescence) imaging, ultra-high frequency and clinical ultrasound, high-resolution low-energy radiography, clinical radiography and fluoroscopy, anesthesia and monitoring equipment and animal housing for both small and large animals. The objectives of the CCAl shared resource are: 1) Provide Cancer Center members direct access to a comprehensive, multimodality research imaging resource for studies involving induced cancer models in small animals (primarily mice and rats) 2) Provide Cancer Center members direct access to a comprehensive, multimodality research imaging resource for studies involving spontaneous and induced cancer models in large animals (dog, cat, pig, etc). 3) Design and synthesize novel imaging tracers for studies involving targeted tracer delivery. 4) Provide professional consultation to investigators for design of experimental studies. 5) Provide technical support to CC members for execution of animal imaging studies and for collection and analysis of data.

Public Health Relevance

The UC Davis Cancer Center Animal Imaging (CCAl) Shared Resource facilitates cancer-related research involving small and large animal imaging thereby reducing costs, increasing efficiency and improving the productivity of Cancer Center researchers through thoughtful design, execution and analysis of imaging studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743650
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$133,789
Indirect Cost
$46,623
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
York, D; Sproul, C D; Chikere, N et al. (2018) Expression and targeting of transcription factor ATF5 in dog gliomas. Vet Comp Oncol 16:102-107
Wang, Minan; Yao, Li-Chin; Cheng, Mingshan et al. (2018) Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 32:1537-1549
Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong et al. (2018) COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin. Mol Cancer Ther 17:474-483
Fletcher, Kyle; Klosterman, Steven J; Derevnina, Lida et al. (2018) Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genomics 19:851
Seo, Jai Woong; Tavaré, Richard; Mahakian, Lisa M et al. (2018) CD8+ T-Cell Density Imaging with 64Cu-Labeled Cys-Diabody Informs Immunotherapy Protocols. Clin Cancer Res 24:4976-4987
Yuan, Ye; He, Yixuan; Bo, Ruonan et al. (2018) A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 10:21634-21639
Knight, Jennifer F; Sung, Vanessa Y C; Kuzmin, Elena et al. (2018) KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer. Cell Rep 22:3191-3205
Xue, Xiangdong; Huang, Yee; Bo, Ruonan et al. (2018) Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat Commun 9:3653
Dou, John; Schmidt, Rebecca J; Benke, Kelly S et al. (2018) Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation. Epigenetics 13:108-116
Couto, K M; Moore, P F; Zwingenberger, A L et al. (2018) Clinical characteristics and outcome in dogs with small cell T-cell intestinal lymphoma. Vet Comp Oncol 16:337-343

Showing the most recent 10 out of 836 publications