Developmental Funds amounting to 10% of the total Direct Costs of the CCSG Budget ($100,795) are requested for three major purposes: ? to facilitate faculty recruitment ? to provide seed grant support for interdisciplinary collaborations ? to support technology development As a newly constituted Cancer Center, developmental funds will be essential to enable the leadership to contribute to the recruitment of faculty in areas established as high priority by our strategic planning process. In addition, the promotion of interdisciplinary research will require seed money for pilot grant support in areas that bring investigators of different disciplines together. Finally, the ability to integrate genomics and informatics into the Cancer Center will require core grant support. Developmental funds will be supplemented by President Hennessey's contribution of $3M over the next 4 years since the amount of CCSG support for these activities is constrained by the overall budget. Allocation of Developmental Funds will be through 1) the strategic planning process and the assent of program planning committee members to the proposed use in pursuit of the goals agreed upon;2) recruitment in pre-defined areas that meets the criteria set out by Cancer Center leaders and their steering committees;3) an in-house peer review mechanism for pilot projects with final approval granted by the Senior Leadership group.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA124435-03
Application #
7826888
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
3
Fiscal Year
2009
Total Cost
$183,593
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Patel, Manali I; Sundaram, Vandana; Desai, Manisha et al. (2018) Effect of a Lay Health Worker Intervention on Goals-of-Care Documentation and on Health Care Use, Costs, and Satisfaction Among Patients With Cancer: A Randomized Clinical Trial. JAMA Oncol 4:1359-1366
Trieu, Vanessa; Pinto, Harlan; Riess, Jonathan W et al. (2018) Weekly Docetaxel, Cisplatin, and Cetuximab in Palliative Treatment of Patients with Squamous Cell Carcinoma of the Head and Neck. Oncologist 23:764-e86
Kuonen, François; Surbeck, Isabelle; Sarin, Kavita Y et al. (2018) TGF?, Fibronectin and Integrin ?5?1 Promote Invasion in Basal Cell Carcinoma. J Invest Dermatol 138:2432-2442
Gee, Marvin H; Han, Arnold; Lofgren, Shane M et al. (2018) Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 172:549-563.e16
Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J et al. (2018) Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173:338-354.e15
Banerjee, Imon; Gensheimer, Michael Francis; Wood, Douglas J et al. (2018) Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Sci Rep 8:10037
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14
Rogers, Zoë N; McFarland, Christopher D; Winters, Ian P et al. (2018) Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 50:483-486
Nair, Viswam S; Sundaram, Vandana; Desai, Manisha et al. (2018) Accuracy of Models to Identify Lung Nodule Cancer Risk in the National Lung Screening Trial. Am J Respir Crit Care Med 197:1220-1223
She, Richard; Jarosz, Daniel F (2018) Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell 172:478-490.e15

Showing the most recent 10 out of 322 publications