The goal of the Breast Cancer Program (BCP) is to facilitate the interactions of individuals concerned with studies on breast development and cancer. The goals of BCP members are to advance understanding of the mechanisms of breast cancer development and to translate information from the bench to the bedside. The BCP program has 24 members with their primary appointments in several departments at BCM, including the Breast Center, Medicine, Pathology, Molecular and Cellular Biology, Surgery, and Radiology. The BCP program has $5,757,823 in support from NCI and $9,143,556 in total peer reviewed support. Members of the program published 170 publications in 2006-2009, of which 24% represented intraprogrammatic collaborations and 30% interprogrammatic collaborations. Research in the basic sciences focuses on several themes, which include mechanisms of hormone and growth factor resistance, breast cancer stem cells, signaling networks in normal and breast cancer development, premalignant progression, and mechanisms of prevention of mammary carcinogenesis. The clinical/translational programs are multiple and supported in part by an NCI-funded Breast SPORE, which comprises five research projects. Other translational projects include the Stand Up 2 Cancer Program, a large multi-center study to molecularly subtype breast cancers with the goal to discover new therapeutic targets, a Komen Promise grant to discover new therapeutic targets involved in growth of ER-negative breast cancer and conduct clinical trials on the new targets, the Pan American Clinical Trials Network and several studies on gene signatures that predict prognosis. Clinical research is performed in the outpatient facilities of The Baylor Clinic and Ben Taub Hospital. Approximately 600 new breast cancer patients are seen yearly. Clinical members of the BCP are members and leaders in the NSABP and SWOG. There are 19 investigator-initiated clinical trials involve ER/growth factor crosstalk, targeting the HER/2 pathway, gene signatures predicting treatment response, and psychosocial/quality of life issues. Program interactions exist at multiple levels and include intra- and interprogrammatic research collaborations, research interactions with industry, educational activities and community outreach programs, patient advocate programs, and regularly scheduled research meetings and seminars. The program leaders are Daniel Medina, Ph.D., and Jenny C. N. Chang, M.D.

Public Health Relevance

The aims of the basic and translational experiments proposed are directly related to understanding the development, progression, and treatment of breast cancer, which is the second leading cause of cancer deaths in women in the USA. Basic research on the mechanisms of tumor resistance to hormonal or growth factor targeted therapy is translated into clinical trials. Similarly, the identification of cancer stem cells in preclinical models is translated into clinical studies evaluating the role of stem cells in therapeutic resistance.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA125123-04
Application #
8180935
Study Section
Subcommittee G - Education (NCI)
Project Start
2010-09-17
Project End
2015-06-30
Budget Start
2010-09-17
Budget End
2011-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$16,465
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Xing, Zhen; Zhang, Yanyan; Liang, Ke et al. (2018) Expression of Long Noncoding RNA YIYA Promotes Glycolysis in Breast Cancer. Cancer Res 78:4524-4532
Creighton, Chad J (2018) The clinical applications of The Cancer Genome Atlas project for bladder cancer. Expert Rev Anticancer Ther 18:973-980
Guarducci, Cristina; Bonechi, Martina; Benelli, Matteo et al. (2018) Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. NPJ Breast Cancer 4:38
Byrd, Tiara T; Fousek, Kristen; Pignata, Antonella et al. (2018) TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res 78:489-500
Kho, Jordan; Tian, Xiaoyu; Wong, Wing-Tak et al. (2018) Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension. Am J Hum Genet 103:276-287
Chiang, Angie C A; Fowler, Stephanie W; Savjani, Ricky R et al. (2018) Combination anti-A? treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med 215:1349-1364
Szwarc, Maria M; Hai, Lan; Gibbons, William E et al. (2018) Retinoid signaling controlled by SRC-2 in decidualization revealed by transcriptomics Reproduction 156:387-395
Nguyen, Tuan M; Kabotyanski, Elena B; Dou, Yongchao et al. (2018) FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Res 78:4229-4240
Grzeskowiak, Caitlin L; Kundu, Samrat T; Mo, Xiulei et al. (2018) In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun 9:2732
Liu, Yanhong; O'Brien, Jacqueline L; Ajami, Nadim J et al. (2018) Lung tissue microbial profile in lung cancer is distinct from emphysema. Am J Cancer Res 8:1775-1787

Showing the most recent 10 out of 991 publications