The goal of the Breast Cancer Program (BCP) is to facilitate the interactions of individuals concerned with studies on breast development and cancer. The goals of BCP members are to advance understanding of the mechanisms of breast cancer development and to translate information from the bench to the bedside. The BCP program has 24 members with their primary appointments in several departments at BCM, including the Breast Center, Medicine, Pathology, Molecular and Cellular Biology, Surgery, and Radiology. The BCP program has $5,757,823 in support from NCI and $9,143,556 in total peer reviewed support. Members of the program published 170 publications in 2006-2009, of which 24% represented intraprogrammatic collaborations and 30% interprogrammatic collaborations. Research in the basic sciences focuses on several themes, which include mechanisms of hormone and growth factor resistance, breast cancer stem cells, signaling networks in normal and breast cancer development, premalignant progression, and mechanisms of prevention of mammary carcinogenesis. The clinical/translational programs are multiple and supported in part by an NCI-funded Breast SPORE, which comprises five research projects. Other translational projects include the Stand Up 2 Cancer Program, a large multi-center study to molecularly subtype breast cancers with the goal to discover new therapeutic targets, a Komen Promise grant to discover new therapeutic targets involved in growth of ER-negative breast cancer and conduct clinical trials on the new targets, the Pan American Clinical Trials Network and several studies on gene signatures that predict prognosis. Clinical research is performed in the outpatient facilities of The Baylor Clinic and Ben Taub Hospital. Approximately 600 new breast cancer patients are seen yearly. Clinical members of the BCP are members and leaders in the NSABP and SWOG. There are 19 investigator-initiated clinical trials involve ER/growth factor crosstalk, targeting the HER/2 pathway, gene signatures predicting treatment response, and psychosocial/quality of life issues. Program interactions exist at multiple levels and include intra- and interprogrammatic research collaborations, research interactions with industry, educational activities and community outreach programs, patient advocate programs, and regularly scheduled research meetings and seminars. The program leaders are Daniel Medina, Ph.D., and Jenny C. N. Chang, M.D.

Public Health Relevance

The aims of the basic and translational experiments proposed are directly related to understanding the development, progression, and treatment of breast cancer, which is the second leading cause of cancer deaths in women in the USA. Basic research on the mechanisms of tumor resistance to hormonal or growth factor targeted therapy is translated into clinical trials. Similarly, the identification of cancer stem cells in preclinical models is translated into clinical studies evaluating the role of stem cells in therapeutic resistance.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-05
Application #
8296115
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$14,913
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Nair, Amritha; Chung, Hsiang-Ching; Sun, Tingting et al. (2018) Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nat Med 24:505-511
Yu, Wangie; Chen, Yunyun; Dubrulle, Julien et al. (2018) Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep 8:4306
Singh, Ramesh; Karri, Dileep; Shen, Hong et al. (2018) TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J Clin Invest 128:3129-3143
Richards, JoAnne S; Ren, Yi A; Candelaria, Nicholes et al. (2018) Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 39:1-20
Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan et al. (2018) Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study. J Neurol 265:1432-1442
Chen, Fengju; Zhang, Yiqun; Gibbons, Don L et al. (2018) Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases. Clin Cancer Res 24:2182-2193
Maldonado, Maria; Molfese, David L; Viswanath, Humsini et al. (2018) The habenula as a novel link between the homeostatic and hedonic pathways in cancer-associated weight loss: a pilot study. J Cachexia Sarcopenia Muscle 9:497-504
Kogiso, Mari; Qi, Lin; Braun, Frank K et al. (2018) Concurrent Inhibition of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A Inhibitor MLN8237 Predicted Survival Extension in PDOX Models. Clin Cancer Res 24:2159-2170
Takahashi, Hannah; Cornish, Alex J; Sud, Amit et al. (2018) Mendelian randomisation study of the relationship between vitamin D and risk of glioma. Sci Rep 8:2339

Showing the most recent 10 out of 991 publications