The Nuclear Receptor Program is a network of 20 NIH funded basic scientists focused on understanding the contribution of nuclear receptor transcription factor and chromatic modifying coregulator function to cancer development. Members have a total of $14,612,144 in peer-reviewed research support, $4,167,979 of which is from NCI and the remainder from other NIH institutes, the Department of Defense, and cancer foundation funds. Members of the Program have a strong record of both intraprogramatic collaboration and interprogramatic interactions with both basic and clinical programs throughout the cancer center. During the last three years, members published 202 peer reviewed manuscripts of which 39% were the result of intraprogrammatic interactions and 34% from interrogrammatic publications. A major goal to identify novel therapeutic targets among members of the nuclear receptor superfamily and nuclear receptor interacting coregulator proteins for prevention of and therapeutic intervention in cancer. To achieve this goal, we have adopted an integrative approach with three central components: 1) nuclear receptor and coregulator discovery and analysis of their mechanisms of regulation of cellular homeostasis, 2) preclinical assessment of their roles in cancer development using genetically manipulated mouse model systems, and 3) A translational component involving interaction with clinical programs to rapidly transfer new information into receptor profiling and assessment of therapeutic potential in human cancers. Major accomplishments include elucidation of a breast cancer cell selective posttranslational code that is responsible for overexpression of the pi60 coactivator I breast cancer cells, SRC-3 in breast cancer cells;identification of a critical role of coactivators SRC-1 and SRC-3 in breast and prostate cancer metastases;discovery of the orphan nuclear receptors, NR4A1 and NR4A3 as novel tumor suppressors of acute myeloid leukemia and discovery of their widespread gene silencing in human AML patients regardless of genetic heterogeneity;and discovery of the orphan COUP-TFII as a potent driver of epithelial tumor associated angiogenesis and metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-05
Application #
8296132
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
5
Fiscal Year
2011
Total Cost
$13,531
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Criglar, Jeanette M; Anish, Ramakrishnan; Hu, Liya et al. (2018) Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proc Natl Acad Sci U S A 115:E12015-E12023
Rimawi, Mothaffar F; De Angelis, Carmine; Contreras, Alejandro et al. (2018) Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 167:731-740
Alvarado, Gabriela; Ettayebi, Khalil; Atmar, Robert L et al. (2018) Human Monoclonal Antibodies That Neutralize Pandemic GII.4 Noroviruses. Gastroenterology 155:1898-1907
Pankowicz, Francis P; Barzi, Mercedes; Kim, Kang Ho et al. (2018) Rapid Disruption of Genes Specifically in Livers of Mice Using Multiplex CRISPR/Cas9 Editing. Gastroenterology 155:1967-1970.e6
Tan, Qiumin; Brunetti, Lorenzo; Rousseaux, Maxime W C et al. (2018) Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci U S A 115:E1511-E1519
Jones, Kathryn; Versteeg, Leroy; Damania, Ashish et al. (2018) Vaccine-Linked Chemotherapy Improves Benznidazole Efficacy for Acute Chagas Disease. Infect Immun 86:
Madan, Simran; Kron, Bettina; Jin, Zixue et al. (2018) Arginase overexpression in neurons and its effect on traumatic brain injury. Mol Genet Metab 125:112-117
Yin, Jiani; Chen, Wu; Chao, Eugene S et al. (2018) Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome. Am J Hum Genet 102:296-308
Hsu, Joanne I; Dayaram, Tajhal; Tovy, Ayala et al. (2018) PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell 23:700-713.e6

Showing the most recent 10 out of 991 publications