The goal of the Flow Cytometry Shared Resource to provide users with cost-effective instrumentation, expertise and training for cell sorting and analysis. This technology continues to develop at a rapid pace, especially with the advent of novel fluorescent reporters, increased computational capacity and more cost-effective optical equipment. To meet our members'increasing demands for state-of-the-art flow cytometry, the DLDCC and BCM administration collaborated to create an entirely new flow cytometry facility in 2007. Renovation, operating costs and instrumentation has been supported by $1.7 million in BCM institutional funds and >$600,000 in DLDCC funds. The revamped Facility is housed in newly renovated, centrally located space, which is available to trained users 24 h a day via key-card access. State-of-the-art instrumentation, all of which has been purchased in the last three years, includes two fully loaded florescence-activated cell sorters, three flow analyzers and a magnetic cell separator. The Resource is directed by Dr, Ellen A. Lumpkin, who has over nine years of experience in flow cytometry, and Mr. Joel Sederstrom, who was recruited from the Univ. of Minnesota's Cancer Center Flow Cytometry Core in a national search. To ensure optimal use of services, the Resource provides consultations, training and protocols for sample preparation, flow analysis and cell sorting. The Resource is also staffed with two full-time experienced flow cytometrists who perform operator-assisted cytometry, and assist users with data analysis. With the Resource's improved services and capacity, FACS sorting has increased by >500% and FACS analysis has increased 160% among Cancer Center members. At present, the Resource operates near 100% of its capacity, with 78% of usage occupied by 65 Cancer Center investigators whose membership spans all Scientific Programs. Future plans include further expanding services by recruiting an additional cytometrist and by including a second site at our affiliated institution, Texas Children's Hospital Cancer Center.

Public Health Relevance

Flow cytometry is essential for Cancer Center members, who rely on this technology to elucidate mechanisms of tumor suppressor and oncogenes, cell-cycle progression, transforming viruses and to evaluate currently prescribed cancer therapies. Flow cytometry is also integral to studies of cancer stem cells, angiogenesis, transcriptional regulation in tumor cells and mechanisms of DNA break and repair.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-08
Application #
8690551
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey et al. (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6:34
Badr, Hoda; Herbert, Krista; Bonnen, Mark D et al. (2018) Dyadic Coping in Patients Undergoing Radiotherapy for Head and Neck Cancer and Their Spouses. Front Psychol 9:1780
Morita, Daisuke; Nishio, Nobuhiro; Saito, Shoji et al. (2018) Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol Ther Methods Clin Dev 8:131-140
Gates, Leah A; Gu, Guowei; Chen, Yue et al. (2018) Proteomic profiling identifies key coactivators utilized by mutant ER? proteins as potential new therapeutic targets. Oncogene 37:4581-4598
Ballester, Leomar Y; Lu, Guangrong; Zorofchian, Soheil et al. (2018) Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun 6:85
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139
Qin, Liying; Sankaran, Banumathi; Aminzai, Sahar et al. (2018) Structural basis for selective inhibition of human PKG I? by the balanol-like compound N46. J Biol Chem 293:10985-10992
Shi, Xiangguo; Kitano, Ayumi; Jiang, Yajian et al. (2018) Clonal expansion and myeloid leukemia progression modeled by multiplex gene editing of murine hematopoietic progenitor cells. Exp Hematol 64:33-44.e5
Dasgupta, Subhamoy; Rajapakshe, Kimal; Zhu, Bokai et al. (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249-254
Xiao, Yangyan; de Paiva, Cintia S; Yu, Zhiyuan et al. (2018) Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells. Int Immunol 30:457-470

Showing the most recent 10 out of 991 publications