The overarching goal of the Cancer Biology Program, CBP, is to increase our understanding of the basic genetic, molecular, and biological mechanisms of cancer development and progression and to facilitate the translation of these findings for improved diagnostic, therapeutic, and preventative measures. The CBP consists of 51 Research Members, 14 Clinical Members, and 2 Adjunct Members. The membership spans 14 departments, and 2 centers, with two members from other institutions. The membership has $4.5 million in NCI funded research support out of a total of $30.6 million in total research support. The CBP program is highly productive with a total of 685 publications with 15% of the publications being intra-programmatic and 19% inter-programmatic. The program has been subdivided into 4 interdependent themes: Computational Biology, Functional Genomics, Cell Signaling, and Translation. The Computational Theme uses bioinformatic analyses of genomic, transcriptomic, proteomic, and metabolomic data to identify clinically relevant pathways for the development of therapeutic reagents or potential biomarkers to be moved to preclinical validation studies. The Functional Genomics Theme uses genetically engineered mouse models and patient-derived xenograft analysis to determine the significance of genetic alterations in human cancer as identified by the Computational Biology Theme. The Cell Signaling Theme functions to conduct in vitro mechanistic analysis of signaling pathways identified by the Computational and Functional Genomics Theme to determine how these pathways regulate cancer initiation, progression, and metastasis. The role of this group is to identify which pathways are targets for biomarkers or therapeutic development. Finally, the Translational Theme consists of clinical researchers and researchers involved in development of novel therapeutics. The goal of this Theme is to facilitate the translation of the basic science findings of the CBP to the patient. This group aids CBP researchers in determining how these findings can be translated to the development of therapies and biomarkers for the treatment of cancer.

Public Health Relevance

Dan L. Duncan Cancer Center at Baylor College of Medicine OVERALL - PROJECT NARRATIVE Cancer is a leading cause of morbidity and mortality in the United States and globally. The diagnosis and treatment of cancer are extraordinarily demanding and increasingly expensive with major impacts on our economy. Although overall survival from cancer has improved and certain cancers can be prevented or cured, much remains to be accomplished to improve patient outcome through research to develop novel strategies to prevent, diagnose early, and effectively treat this disease. The Dan L. Duncan Cancer Center at Baylor College of Medicine has put together a strong multidisciplinary team of scientists, clinicians, educators, and community outreach experts to further improve survival from cancer both in our Catchment Area and globally, and to educate the scientists and clinicians of the future.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-13
Application #
9759777
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Shafik, Hasnaa
Project Start
2007-07-01
Project End
2020-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
13
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Disney-Hogg, Linden; Sud, Amit; Law, Philip J et al. (2018) Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer 118:1020-1027
Szwarc, Maria M; Kommagani, Ramakrishna; Putluri, Vasanta et al. (2018) Steroid Receptor Coactivator-2 Controls the Pentose Phosphate Pathway through RPIA in Human Endometrial Cancer Cells. Sci Rep 8:13134
Kruse, Robert L; Shum, Thomas; Tashiro, Haruko et al. (2018) HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy 20:697-705
Samaha, Heba; Pignata, Antonella; Fousek, Kristen et al. (2018) A homing system targets therapeutic T cells to brain cancer. Nature 561:331-337
Wang, Changjun; Zaheer, Mahira; Bian, Fang et al. (2018) Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int J Mol Sci 19:
Su, Jianzhong; Huang, Yung-Hsin; Cui, Xiaodong et al. (2018) Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biol 19:108
Lu, Lianghao; Wen, Yefei; Yao, Yuan et al. (2018) Glucocorticoids Inhibit Oncogenic RUNX1-ETO in Acute Myeloid Leukemia with Chromosome Translocation t(8;21). Theranostics 8:2189-2201
Martini-Stoica, Heidi; Cole, Allysa L; Swartzlander, Daniel B et al. (2018) TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J Exp Med 215:2355-2377
Singh, Ramesh; Karri, Dileep; Shen, Hong et al. (2018) TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J Clin Invest 128:3129-3143
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746

Showing the most recent 10 out of 991 publications