The Chemistry and Cancer Program (CCP) seeks to discover small molecule chemicals capable of either antagonizing or agonizing regulatory pathways relevant to human cancer. Research efforts in the CCP proceed from one of two directions, chemistry-to-biology or biology-to-chemistry. In the former case, the discovery process starts with a novel natural product that is cytotoxic to cancer cells. This molecule, and specific derivatives synthesized by organic chemists, is then subjected to biochemical, genetic or molecular biological studies aimed at resolving its precise mode of action. Alternatively, knowledge of a specific biological pathway relevant to human cancer prompts attempts to identify small chemical antagonists or agonists of the pathway. The latter path is prosecuted by high throughput drug screening, rational peptidomimetics, or preparation of synthetic analogs of biological metabolites. In this context, the current scientific program themes are: 1) Identifying the Molecular Targets of Novel Cytotoxic Agents. 2) Biochemical Dissection of Novel. Cancer Cell-Specific Pathways. 3 ) Smac mimetics and other means of perturbing apoptosis with synthetic chemicals. 4) Regulation and targeting of the hypoxia response pathway with small molecules. The long-term objective of the CCP is to discover """"""""first-in-class"""""""" chemical compounds, some of which may qualify for rigorous pre-clinical development. In doing so, we will provide the scientific expertise and resources from which program- and cancer center-wide translational research can sprout. Therefore, an additional major goal of the CCP is to develop and provide scientific and technical expertise in chemistry, pharmacology and High Throughput screening.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA142543-04
Application #
8519956
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$42,147
Indirect Cost
$27,467
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Zhou, Heling; Arias-Ramos, Nuria; López-Larrubia, Pilar et al. (2018) Oxygenation Imaging by Nuclear Magnetic Resonance Methods. Methods Mol Biol 1718:297-313
Denman, Deanna C; Baldwin, Austin S; Betts, Andrea C et al. (2018) Reducing ""I Don't Know"" Responses and Missing Survey Data: Implications for Measurement. Med Decis Making 38:673-682
Croessmann, Sarah; Sheehan, Jonathan H; Lee, Kyung-Min et al. (2018) PIK3CA C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3K? Inhibitors. Clin Cancer Res 24:1426-1435
Wang, Tao; Lu, Rong; Kapur, Payal et al. (2018) An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. Cancer Discov 8:1142-1155
LaRanger, Ryan; Peters-Hall, Jennifer R; Coquelin, Melissa et al. (2018) Reconstituting Mouse Lungs with Conditionally Reprogrammed Human Bronchial Epithelial Cells. Tissue Eng Part A 24:559-568
Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian et al. (2018) Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility. Gut 67:508-520
Kim, Wanil; Shay, Jerry W (2018) Long-range telomere regulation of gene expression: Telomere looping and telomere position effect over long distances (TPE-OLD). Differentiation 99:1-9
Li, Shulong; Yang, Ning; Li, Bin et al. (2018) A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT. Med Image Anal 50:106-116
Wang, Shidan; Chen, Alyssa; Yang, Lin et al. (2018) Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Sci Rep 8:10393
An, Weiwei; Mason, Ralph P; Lippert, Alexander R (2018) Energy transfer chemiluminescence for ratiometric pH imaging. Org Biomol Chem 16:4176-4182

Showing the most recent 10 out of 501 publications