The overall goal of the Protein Identification Core of the UIUC Neuroproteomics Center on Cell-Cell Signaling is to characterize the protein and peptide complements of a range of samples, with a special emphasis on those involved in intercellular signaling. The intracellular signaling molecules expressed in the cells and tissues under investigation present an extremely complex analytical challenge with a vast number of components, varying dramatically in size and concentration. To address these challenges, and to provide our users with a battery of state-of-the-art protein identification techniques, a range of mass spectrometric approaches are used, including differential gel electrophoresis, mass fingerprinting, tandem sequencing, accurate mass measurements, and top-down intact protein analysis. In addition, spatial localization of intercellular signaling molecules is performed using a variety of mass spectrometric imaging techniques. Our user's needs for intercellular signaling molecule identification and quantitation in the brain are quite different from what is required from proteomics measurements of unicellular organisms and homogenous tissues, particularly with regard to sample size and complexity. Thus, the advanced measurement strategies used in our Center reflect this complexity. With the combined expertise and facilities in the research groups associated with this core, a unique opportunity exists to identify and characterize intercellular signaling peptides and proteins across a surprising range of models and scales.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Center Core Grants (P30)
Project #
5P30DA018310-08
Application #
8294805
Study Section
Special Emphasis Panel (ZDA1)
Project Start
Project End
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
8
Fiscal Year
2011
Total Cost
$283,808
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Green, Daniel J; Huang, Rong-Chi; Sudlow, Leland et al. (2018) cAMP, Ca2+, pHi, and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug Pleurobranchaea californica. ACS Chem Neurosci 9:1986-1993
Rodriguez-Zas, Sandra L; Wu, Cong; Southey, Bruce R et al. (2018) Disruption of microglia histone acetylation and protein pathways in mice exhibiting inflammation-associated depression-like symptoms. Psychoneuroendocrinology 97:47-58
Do, Thanh D; Ellis, Joseph F; Neumann, Elizabeth K et al. (2018) Optically Guided Single Cell Mass Spectrometry of Rat Dorsal Root Ganglia to Profile Lipids, Peptides and Proteins. Chemphyschem 19:1180-1191
Atkins Jr, Norman; Ren, Shifang; Hatcher, Nathan et al. (2018) Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock. ACS Chem Neurosci 9:2001-2008
Tai, Hua-Chia; Checco, James W; Sweedler, Jonathan V (2018) Non-targeted Identification of D-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Methods Mol Biol 1719:107-118
Davis, Roderick G; Park, Hae-Min; Kim, Kyunggon et al. (2018) Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains. Anal Chem 90:3802-3810
Qi, Meng; Philip, Marina C; Yang, Ning et al. (2018) Single Cell Neurometabolomics. ACS Chem Neurosci 9:40-50
Neumann, Elizabeth K; Comi, Troy J; Spegazzini, Nicolas et al. (2018) Multimodal Chemical Analysis of the Brain by High Mass Resolution Mass Spectrometry and Infrared Spectroscopic Imaging. Anal Chem 90:11572-11580
Yang, Ning; Anapindi, Krishna D B; Rubakhin, Stanislav S et al. (2018) Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 17:1463-1473
Tillmaand, Emily G; Sweedler, Jonathan V (2018) Integrating Mass Spectrometry with Microphysiological Systems for Improved Neurochemical Studies. Microphysiol Syst 2:

Showing the most recent 10 out of 227 publications