A major focus of research in the RMTSC laboratories is the use of specific molecular probes to delineate cellular composition and function in chemosensory systems. The major function of this core is to facilitate research of the participating investigators which relies on anatomically oriented methods to probe the organization, development or function of chemosensory epithelia or neural centers primarily involved in processing chemosensory information. The Core functions are encompassed by 3 specific Aims: 1. Support & Development of advanced histoiogical techniques 2. Confocal and Electron Microscopy 3. Quantitative Analysis and Visualization of Complex Anatomical Data Sets. Although each of the RMTSC laboratories utilizes anatomical techniques as a part of their overall research program, not all laboratories have equal access or experience in using advanced methodologies such as dual-labeling, functional imaging and electron microscopy. This Core facilitates sharing of expertise among the laboratories and makes available to all, specialized facilities available only at one of the participating Universities. Not only will the Core serve the local RMTSC investigators, but it will also serve as a resource for other chemosensory researchers especially in regards to development of software for mapping chemosensory representation in the brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC004657-09
Application #
7684762
Study Section
Special Emphasis Panel (ZDC1)
Project Start
2008-09-01
Project End
2010-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
9
Fiscal Year
2008
Total Cost
$338,876
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Romanov, Roman A; Lasher, Robert S; High, Brigit et al. (2018) Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 11:
Stratford, J M; Larson, E D; Yang, R et al. (2017) 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste? J Comp Neurol 525:2358-2375
Li, Anan; Guthman, Ethan M; Doucette, Wilder T et al. (2017) Behavioral Status Influences the Dependence of Odorant-Induced Change in Firing on Prestimulus Firing Rate. J Neurosci 37:1835-1852
Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto et al. (2017) Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development 144:3054-3065
Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo et al. (2017) Serotonergic transmission at Merkel discs: modulation by exogenously applied chemical messengers and involvement of Ih currents. J Neurochem 141:565-576
Finger, Thomas E; Bartel, Dianna L; Shultz, Nicole et al. (2017) 5HTR3A-driven GFP labels immature olfactory sensory neurons. J Comp Neurol 525:1743-1755
Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto et al. (2017) ?-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genet 13:e1006990
Stratford, Jennifer M; Thompson, John A; Finger, Thomas E (2017) Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice. J Comp Neurol 525:271-290
Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo et al. (2016) Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc Natl Acad Sci U S A 113:E5491-500
von Holstein-Rathlou, Stephanie; BonDurant, Lucas D; Peltekian, Lila et al. (2016) FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metab 23:335-43

Showing the most recent 10 out of 138 publications