The sensory organs of the inner ear are among the most complex and exquisitely-patterned structures contained within the vertebrate body. Research on the biological mechanisms of hearing and balance requires the ability to obtain high-resolution images of the cochlea and vestibular organs, as well as their associated tissues. Modern optical and electron microscopy can provide excellent imaging data from processed samples and live tissues, but the cost of such instrumentation is typically beyond the reach of individual labs. The most cost-effective method for providing advanced microscopy services to a number of labs is for those labs to form a consortium and share imaging facilities. The present proposal is for the continuation of a P30 project that is directed toward this goal. Specifically, the Molecular and Digital Imaging (MDI) core will provide access to modern optical and electron microscopy to a group of associated labs whose research is consistent with the mission aims of the NIDCD. This section of the proposal has two Specific Aims: First, we propose to provide facilities for optical microscopy (confocal and conventional epifluorescence) to our core group of researchers, along with complete training in the operation of those instruments. The second Specific Aim is to provide access to both scanning and transmission electron microscopy services to this same group of researchers, along with equipment for sample preparation and training in all facets of EM technique. Both optical and EM imaging are heavily reliant on digital image processing, so we will also provide complete computational resources to users of our shared facility. Our core research group is large and diverse, but we are united by many common goals. In addition, we foster numerous collaborative projects, many of which have been initiated and facilitated by the MDI core resources. The MDI core has established an excellent track record of utilization and research productivity. During the previous funding cycle, we have provided imaging instrumentation and training to a total of 37 labs, and data obtained from MDI core facilities has appeared in 56 peer-reviewed publications. In light of this high level of productivity, along with our newly upgraded confocal facility and strong research group, we seek to continue to promote the research of our member labs, and increase existing knowledge of the biological basis of hearing and balance and associated pathologies.

Public Health Relevance

The P30 Research Core Center provides access to instrumentation, technical services and training, in order to facilitate the scientific progress of investigators conducting research in mission areas of the NIDCD. We provide shared resources that would otherwise be unavailable to individual labs, and also promote scientific interaction, collaboration and translational research. Highlighted areas of support include Functional Testing, Histology, Microscopy &Digital Imaging, and Clinical &Translational Research.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC004665-14
Application #
8725631
Study Section
Special Emphasis Panel (ZDC1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
14
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
Ohlemiller, Kevin K; Kaur, Tejbeer; Warchol, Mark E et al. (2018) The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice. Hear Res 361:138-151
Kaur, Tejbeer; Ohlemiller, Kevin K; Warchol, Mark E (2018) Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 526:824-835
Graboyes, Evan M; Kallogjeri, Dorina; Saeed, Mohammed J et al. (2017) Postoperative care fragmentation and thirty-day unplanned readmissions after head and neck cancer surgery. Laryngoscope 127:868-874
Graboyes, Evan M; Kallogjeri, Dorina; Saeed, Mohammed J et al. (2017) 30-day hospital readmission following otolaryngology surgery: Analysis of a state inpatient database. Laryngoscope 127:337-345
Kim, Alfred Hj; Chung, Jun-Jae; Akilesh, Shreeram et al. (2017) B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2:
Kao, W Katherine; Gagnon, Patricia M; Vogel, Joseph P et al. (2017) Surface charge modification decreases Pseudomonas aeruginosa adherence in vitro and bacterial persistence in an in vivo implant model. Laryngoscope 127:1655-1661
Kao, Wee Tin K; Parnes, Lorne S; Chole, Richard A (2017) Otoconia and otolithic membrane fragments within the posterior semicircular canal in benign paroxysmal positional vertigo. Laryngoscope 127:709-714
Teisher, J K; McKain, M R; Schaal, B A et al. (2017) Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn. Ann Bot 120:725-738
Warchol, Mark E; Stone, Jennifer; Barton, Matthew et al. (2017) ADAM10 and ?-secretase regulate sensory regeneration in the avian vestibular organs. Dev Biol 428:39-51
Morley, Barbara J; Dolan, David F; Ohlemiller, Kevin K et al. (2017) Generation and Characterization of ?9 and ?10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background. Front Neurosci 11:516

Showing the most recent 10 out of 159 publications