The Engineering Core provides technical services in electronics and computation. The Core's goal is to provide state of the art experimental setups for data acquisition in neurophysiology, evoked potentials, behavioral analysis, and other applications. This goal is achieved by designing electronics for special applications, writing computer programs for data acquisition, and by gluing together equipment from different manufacturers. The core's specific activities include design and fabrication of specialized electronic equipment, routine repair and maintenance of computer and electronic equipment, computer programming, and assisting researchers in writing software for sophisticated spike-train analysis, simulation, and stimulus generation. The researchers supported by the Core have a wide range of interests, including analysis of the normal and impaired auditory and vestibular systems, neural prostheses for treatment of hearing and balance impairment, analysis of the molecular and cellular properties of hair cells and associated systems, behavioral and neurophysiological analysis of the auditory system, and computational and theoretical neuroscience.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC005211-10
Application #
8305650
Study Section
Special Emphasis Panel (ZDC1)
Project Start
Project End
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
10
Fiscal Year
2011
Total Cost
$272,634
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lauer, Amanda M; Larkin, Gail; Jones, Aikeen et al. (2018) Behavioral Animal Model of the Emotional Response to Tinnitus and Hearing Loss. J Assoc Res Otolaryngol 19:67-81
Wu, Jingjing Sherry; Vyas, Pankhuri; Glowatzki, Elisabeth et al. (2018) Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrp?) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 526:425-438
Jones, Aikeen; May, Bradford J (2018) Effects of Acoustic Environment on Tinnitus Behavior in Sound-Exposed Rats. J Assoc Res Otolaryngol 19:133-146
Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri et al. (2018) Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea. J Neurosci 38:5677-5687
Moglie, Marcelo J; Fuchs, Paul A; Elgoyhen, Ana Belén et al. (2018) Compartmentalization of antagonistic Ca2+ signals in developing cochlear hair cells. Proc Natl Acad Sci U S A 115:E2095-E2104
Cunningham, Christopher L; Wu, Zizhen; Jafari, Aria et al. (2017) The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. Elife 6:
Lauer, Amanda M (2017) Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice. Front Neurosci 11:304
Johnson, Luke A; Della Santina, Charles C; Wang, Xiaoqin (2017) Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (Callithrix jacchus). J Neurosci 37:7008-7022
Jones, Aikeen; May, Bradford J (2017) Improving the Reliability of Tinnitus Screening in Laboratory Animals. J Assoc Res Otolaryngol 18:183-195
Vyas, Pankhuri; Wu, Jingjing Sherry; Zimmerman, Amanda et al. (2017) Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol 18:139-151

Showing the most recent 10 out of 139 publications