The increase in powerful molecular and genetic tools for investigation of gene function in the laboratory mouse has greatly increased interest in this animal as a model for auditory and vestibular research. Although the interpretation of experiments exploiting mice with genetic alterations is not always straightforward, the ability to examine the consequences of modification of a single gene has tremendous implications for molecular investigation of the inner ear. The overall goal of this Core is to enable investigators in the OHCC to carry out genetic manipulations of mice. This ability should enhance present research projects and lead to new experimental approaches, particularly involving collaborations among several investigators. To introduce expertise and services for mouse molecular genetics to the OHCC, three specific aims are proposed: 1. To provide expertise in mouse husbandry. 2. To assist in developing genotyping and expression profiling assays. 3. To generate transgenic and knock-out constructs. By centralizing these activities into a single facility, we will not only allow individual investigators to focus on their individual research projects, but also to create a more cost-effective approach to use of mice in NIDCD-funded research programs. Because mice created by the core will be made available following publication, the core will also be a resource for the greater scientific community.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
1P30DC005983-01
Application #
6663055
Study Section
Special Emphasis Panel (ZDC1-SRB-A (38))
Project Start
2003-03-01
Project End
2008-02-28
Budget Start
Budget End
2004-03-31
Support Year
1
Fiscal Year
2003
Total Cost
$196,285
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Wang, Lingyan; Kempton, J Beth; Brigande, John V (2018) Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 11:300
Oh, Yonghee; Reiss, Lina A J (2018) Binaural Pitch Fusion: Effects of Amplitude Modulation. Trends Hear 22:2331216518788972
Kachelmeier, Allan; Shola, Tsering; Meier, William B et al. (2018) Simplified, automated methods for assessing pixel intensities of fluorescently-tagged drugs in cells. PLoS One 13:e0206628
Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A et al. (2018) ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 38:843-857
Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L et al. (2018) Binaural Pitch Fusion in Bilateral Cochlear Implant Users. Ear Hear 39:390-397
Reiss, Lina A J; Shayman, Corey S; Walker, Emily P et al. (2017) Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listeners. J Acoust Soc Am 141:1909
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer et al. (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6:
Krey, J F; Wilmarth, P A; David, L L et al. (2017) Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry. Methods Enzymol 585:329-354
Adler, Henry J; Anbuhl, Kelsey L; Atcherson, Samuel R et al. (2017) Community network for deaf scientists. Science 356:386-387
Oh, Yonghee; Reiss, Lina A J (2017) Binaural pitch fusion: Pitch averaging and dominance in hearing-impaired listeners with broad fusion. J Acoust Soc Am 142:780

Showing the most recent 10 out of 165 publications