Although most investigators incorporate tissue imaging in their studies, these imaging methods are conducted with varying degrees of technical sophistication, anatomical detail, tissue quality, and technical expertise. In nearly all cases, there is potential for technical refinement when assisted by experienced laboratory personnel. To provide this critical technical support and improved application of digital imaging in ongoing, pending, and new studies, we will continue to operate the Imaging Core. The Imaging Core supports 14 Core Center investigators, funded by the NIDCD and other institutes, with strong focus and a substantial record of accomplishments in imaging the peripheral and central auditory, vestibular, and olfactory sensory pathways. We will continue to centralize expertise in light, confocal and electron-microscopic imaging to enhance presently-funded research projects, permit development of new projects, and stimulate collaborations between participating investigators. The Imaging Core will: 1. Provide administrative and technical oversight to improve facility function, 2. Provide personnel who will assist investigators with current and new studies, 3. Provide access to well-maintained equipment in a more cost-efficient and effective manner, and 4. Provide training to investigators and their staff in data acquisition and interpretation. The Imaging Core will be co-directed by Dennis Trune and Peter Steyger. By providing services not available through existing grants, the Imaging Core will enhance current, planned and future new research projects carried out by Core-facility users and stimulate productive collaborations between P30 investigators, as well as with non-P30 investigators.
This P30 Core Center supports 20 investigators who carry out research into the basic and disease mechanisms of hearing, balance, and smell. The Imaging Core facilitates most of these research programs by offering advanced imaging instrumentation and support staff.
Oh, Yonghee; Reiss, Lina A J (2018) Binaural Pitch Fusion: Effects of Amplitude Modulation. Trends Hear 22:2331216518788972 |
Kachelmeier, Allan; Shola, Tsering; Meier, William B et al. (2018) Simplified, automated methods for assessing pixel intensities of fluorescently-tagged drugs in cells. PLoS One 13:e0206628 |
Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A et al. (2018) ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 38:843-857 |
Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L et al. (2018) Binaural Pitch Fusion in Bilateral Cochlear Implant Users. Ear Hear 39:390-397 |
Wang, Lingyan; Kempton, J Beth; Brigande, John V (2018) Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Front Mol Neurosci 11:300 |
Reiss, Lina A J; Shayman, Corey S; Walker, Emily P et al. (2017) Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listeners. J Acoust Soc Am 141:1909 |
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer et al. (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6: |
Krey, J F; Wilmarth, P A; David, L L et al. (2017) Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry. Methods Enzymol 585:329-354 |
Adler, Henry J; Anbuhl, Kelsey L; Atcherson, Samuel R et al. (2017) Community network for deaf scientists. Science 356:386-387 |
Oh, Yonghee; Reiss, Lina A J (2017) Binaural pitch fusion: Pitch averaging and dominance in hearing-impaired listeners with broad fusion. J Acoust Soc Am 142:780 |
Showing the most recent 10 out of 165 publications