The overall goals of the Center are to: (1) Provide better access to standard laboratory analyses and facilities; (2) assist in recruitment of study patients with diabetes and suitable controls, and provide complex animal models such as primates for diabetes-related investigation; (3) foster the development and efficient use of new technologies relevant to diabetes research; (4) coordinate, stimulate and support collaborative studies between investigators interested in diabetes at the U of Washington; and (5) enhance the environment for research training of post doctoral fellows and predoctoral medical and basic science students interested in Diabetes and related metabolic and endocrine disorders. To accomplish these goals the Diabetes Endocrinology Research Center is organized around six core units: Administrative Core, Clinical Research Core, Cytohistochemistry Core, Immunoassay Core, Physiology Core and Tissue Culture Core. Through specific services provided,, these cores support the research of over 40 Affiliate investigators and 36 Associate investigators. This research covers the entire spectrum of diabetes investigation including (a) molecular, cellular and physiological regulation of metabolic hormones and the mechanism of hormone action, (b) etiology and pathogenesis of IDDM and NIDDM, (c) mechanism of hyperlipidemia and the role of lipoproteins in atherosclerosis, (d) etiology, pathogenesis, treatment and prevention of diabetic complications and (e) etiology and pathogenesis of obesity. In addition, the Center's Pilot and Feasibility and Molecular Studies Development Programs provide initial support for new investigators in the field of diabetes, new diabetes research by established investigators in other disciplines and encourages the application of molecular biology to problems in the field of diabetes. To enhance the scientific environment for diabetes research at the University of Washington, the Center's Enrichment Program provides a Seminar Series, Core Symposia, and Visiting Scientist Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK017047-17
Application #
3101927
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Project Start
1977-06-01
Project End
1997-11-30
Budget Start
1992-12-01
Budget End
1993-11-30
Support Year
17
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Frevert, Charles W; Felgenhauer, Jessica; Wygrecka, Malgorzata et al. (2018) Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem 66:213-227
Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens et al. (2018) Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep 8:5416
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2018) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol 464:65-74
Goedecke, Julia H; Mendham, Amy E; Clamp, Louise et al. (2018) An Exercise Intervention to Unravel the Mechanisms Underlying Insulin Resistance in a Cohort of Black South African Women: Protocol for a Randomized Controlled Trial and Baseline Characteristics of Participants. JMIR Res Protoc 7:e75
Shao, Baohai; Heinecke, Jay W (2018) Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert Rev Proteomics 15:31-40
Han, Seung Jin; Boyko, Edward J; Kim, Soo Kyung et al. (2018) Association of Thigh Muscle Mass with Insulin Resistance and Incident Type 2 Diabetes Mellitus in Japanese Americans. Diabetes Metab J 42:488-495
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K et al. (2018) Consuming glucose-sweetened, not fructose-sweetened, beverages increases fasting insulin in healthy humans. Eur J Clin Nutr :
Basu, Debapriya; Hu, Yunying; Huggins, Lesley-Ann et al. (2018) Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 122:560-567
Yi-Frazier, Joyce P; Cochrane, Katie; Whitlock, Kathryn et al. (2018) Trajectories of Acute Diabetes-Specific Stress in Adolescents With Type 1 Diabetes and Their Caregivers Within the First Year of Diagnosis. J Pediatr Psychol 43:645-653
Campos, Carlos A; Bowen, Anna J; Roman, Carolyn W et al. (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617-622

Showing the most recent 10 out of 1296 publications