The Diabetes Research Center at the University of Washington has existed for 38 years as part of a national program supported by NIH. It acts as the focal point and umbrella for diabetes research in the Greater Seattle area W .h the goal of promoting an environment of collaborative research on diabetes, obesity and related disorders by (a) providing support to affiliate investigators through its biomedical research cores, (b) sponsoring an enrichment program comprising lectures and symposia to Inform the community of the latest developments in the area, (c) conducting a small pilot and feasibility program that provides grant support for new investigators in diabetes research and to established investigators In other disciplines, (d) ensuring the development of young investigators by providing fellowships for salary support and training In Its research cores, and (e) developing new research methods and technologies for use by investigators. To accomplish this goal, the Center is organized around six biomedical research cores (Cell Function Analysis Core, Cellular and Molecular Imaging Core, Human Studies Core, Immunology and Inflammation Core, Quantitative and Functional Proteomics Core, and Viral Vector and Transgenic Mouse Core) and an Administrative Core that also administers the Pilot and Feasibility Program and the Enrichment Program. Along with the commitment of the University of Washington and other Seattle institutions of research space and additional financial support, the Diabetes Research Center is a dynamic and constantly evolving center that supports 95 Seattle-based affiliate investigators who are making important scientific contributions in the areas of (a) etiology, pathogenesis and treatment of type 1 diabetes, (b) pathophysiology and treatment of type 2 diabetes, (c) obesity and regulation of body weight/composition, (d) microvascular complications of diabetes, (e) inflammation, macrovascular and other complications of diabetes, and (f) clinical trials and large-scale epidemiologic studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-38
Application #
8635327
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Program Officer
Hyde, James F
Project Start
1996-12-01
Project End
2017-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$1,404,803
Indirect Cost
$456,522
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wang, Ke; Zelnick, Leila R; Hoofnagle, Andrew N et al. (2018) Alteration of HDL Protein Composition with Hemodialysis Initiation. Clin J Am Soc Nephrol 13:1225-1233
Bharmal, Nazleen H; McCarthy, William J; Gadgil, Meghana D et al. (2018) The Association of Religious Affiliation with Overweight/Obesity Among South Asians: The Mediators of Atherosclerosis in South Asians Living in America (MASALA) Study. J Relig Health 57:33-46
Meek, Thomas H; Matsen, Miles E; Faber, Chelsea L et al. (2018) In Uncontrolled Diabetes, Hyperglucagonemia and Ketosis Result From Deficient Leptin Action in the Parabrachial Nucleus. Endocrinology 159:1585-1594
Elding Larsson, Helena; Lynch, Kristian F; Lönnrot, Maria et al. (2018) Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children. Diabetologia 61:193-202
Bonifacio, Ezio; Beyerlein, Andreas; Hippich, Markus et al. (2018) Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med 15:e1002548
Agarwal, S; Raymond, J K; Isom, S et al. (2018) Transfer from paediatric to adult care for young adults with Type 2 diabetes: the SEARCH for Diabetes in Youth Study. Diabet Med 35:504-512
Logsdon, Aric F; Erickson, Michelle A; Rhea, Elizabeth M et al. (2018) Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 243:159-165
Figlewicz, Dianne P; Jay, Jennifer; West, Constance H et al. (2018) Effect of dietary palmitic and stearic acids on sucrose motivation and hypothalamic and striatal cell signals in the rat. Am J Physiol Regul Integr Comp Physiol 314:R191-R200
Guo, Rui; Hua, Yinan; Ren, Jun et al. (2018) Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis 9:692
van Zuydam, Natalie R; Ahlqvist, Emma; Sandholm, Niina et al. (2018) A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes 67:1414-1427

Showing the most recent 10 out of 1296 publications