The Quantitative and Functional Proteomics Core of the University of Washington Diabetes Research Center provides affiliate investigators the powerful tools of modern mass spectrometry and complex data set analysis. The goals of the Core are to: (1) Perform MS analyses for DRC affiliate investigators, such as quantifying target analytes and obtaining spectra for structural identification of proteins; (2) Develop new MS methods for structural identification or quantification of proteins involved in the pathogenesis of diabetes and its complications, risk factors, or treatment.; (3) Assist DRC affiliates with experimental design of their studies to ensure successful proteomics analysis and provide training in principles and use of MS; (4) Provide a central facility for data storage, dissemination, and sharing; (5) Provide bioinformatics support for analyzing and interpreting proteomic data sets and for integrating them with Gene Ontology, protein-protein interaction databases, and pathway analysis; and (6) Provide bioinformatics support for integration of proteomic studies with functional assays, with the long-term aim of providing an integrated, systems biology view of diabetes and diabetes-related disease processes. By providing a centralized facility, the Core meets these goals with optimal efficiency and cost-effectiveness, providing expertise necessary to perform state-of-the-art proteomics and mass spectrometric studies at the cutting edge of current technology. Further, by centralizing and standardizing procedures, the Quantitative and Functional Proteomics Core provides its affiliate investigators a common set of analytical tools for obtaining a unified understanding of molecular mechanisms involved in pathophysiologic processes of diabetes and its associated complications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-44
Application #
9868998
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Wander, Pandora L; Hayashi, Tomoshige; Sato, Kyoko Kogawa et al. (2018) Design and validation of a novel estimator of visceral adipose tissue area and comparison to existing adiposity surrogates. J Diabetes Complications 32:1062-1067
Han, Seung Jin; Fujimoto, Wilfred Y; Kahn, Steven E et al. (2018) Change in visceral adiposity is an independent predictor of future arterial pulse pressure. J Hypertens 36:299-305
Wacker, Bradley K; Dronadula, Nagadhara; Bi, Lianxiang et al. (2018) Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 38:206-217
Coleman, Brantley; Topalidou, Irini; Ailion, Michael (2018) Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in Caenorhabditis elegans. Genetics 209:523-535
Lemaitre, Rozenn N; Yu, Chaoyu; Hoofnagle, Andrew et al. (2018) Circulating Sphingolipids, Insulin, HOMA-IR, and HOMA-B: The Strong Heart Family Study. Diabetes 67:1663-1672
Xiang, Anny H; Trigo, Enrique; Martinez, Mayra et al. (2018) Impact of Gastric Banding Versus Metformin on ?-Cell Function in Adults With Impaired Glucose Tolerance or Mild Type 2 Diabetes. Diabetes Care 41:2544-2551
Rubinow, Katya B; Vaisar, Tomas; Chao, Jing H et al. (2018) Sex steroids mediate discrete effects on HDL cholesterol efflux capacity and particle concentration in healthy men. J Clin Lipidol 12:1072-1082
Nagy, Nadine; de la Zerda, Adi; Kaber, Gernot et al. (2018) Hyaluronan content governs tissue stiffness in pancreatic islet inflammation. J Biol Chem 293:567-578
Greenbaum, Carla J; Speake, Cate; Krischer, Jeffrey et al. (2018) Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes 67:1216-1225
Hwang, You Cheol; Fujimoto, Wilfred Y; Kahn, Steven E et al. (2018) Predictors of Incident Type 2 Diabetes Mellitus in Japanese Americans with Normal Fasting Glucose Level. Diabetes Metab J 42:198-206

Showing the most recent 10 out of 1296 publications