The Quantitative and Functional Proteomics Core of the University of Washington Diabetes Research Center provides affiliate investigators the powerful tools of modern mass spectrometry and complex data set analysis. The goals of the Core are to: (1) Perform MS analyses for DRC affiliate investigators, such as quantifying target analytes and obtaining spectra for structural identification of proteins; (2) Develop new MS methods for structural identification or quantification of proteins involved in the pathogenesis of diabetes and its complications, risk factors, or treatment.; (3) Assist DRC affiliates with experimental design of their studies to ensure successful proteomics analysis and provide training in principles and use of MS; (4) Provide a central facility for data storage, dissemination, and sharing; (5) Provide bioinformatics support for analyzing and interpreting proteomic data sets and for integrating them with Gene Ontology, protein-protein interaction databases, and pathway analysis; and (6) Provide bioinformatics support for integration of proteomic studies with functional assays, with the long-term aim of providing an integrated, systems biology view of diabetes and diabetes-related disease processes. By providing a centralized facility, the Core meets these goals with optimal efficiency and cost-effectiveness, providing expertise necessary to perform state-of-the-art proteomics and mass spectrometric studies at the cutting edge of current technology. Further, by centralizing and standardizing procedures, the Quantitative and Functional Proteomics Core provides its affiliate investigators a common set of analytical tools for obtaining a unified understanding of molecular mechanisms involved in pathophysiologic processes of diabetes and its associated complications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-45
Application #
10077858
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2018-02-10
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Frevert, Charles W; Felgenhauer, Jessica; Wygrecka, Malgorzata et al. (2018) Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem 66:213-227
Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens et al. (2018) Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics. Sci Rep 8:5416
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2018) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol 464:65-74
Goedecke, Julia H; Mendham, Amy E; Clamp, Louise et al. (2018) An Exercise Intervention to Unravel the Mechanisms Underlying Insulin Resistance in a Cohort of Black South African Women: Protocol for a Randomized Controlled Trial and Baseline Characteristics of Participants. JMIR Res Protoc 7:e75
Shao, Baohai; Heinecke, Jay W (2018) Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert Rev Proteomics 15:31-40
Han, Seung Jin; Boyko, Edward J; Kim, Soo Kyung et al. (2018) Association of Thigh Muscle Mass with Insulin Resistance and Incident Type 2 Diabetes Mellitus in Japanese Americans. Diabetes Metab J 42:488-495
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K et al. (2018) Consuming glucose-sweetened, not fructose-sweetened, beverages increases fasting insulin in healthy humans. Eur J Clin Nutr :
Basu, Debapriya; Hu, Yunying; Huggins, Lesley-Ann et al. (2018) Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 122:560-567
Yi-Frazier, Joyce P; Cochrane, Katie; Whitlock, Kathryn et al. (2018) Trajectories of Acute Diabetes-Specific Stress in Adolescents With Type 1 Diabetes and Their Caregivers Within the First Year of Diagnosis. J Pediatr Psychol 43:645-653
Campos, Carlos A; Bowen, Anna J; Roman, Carolyn W et al. (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617-622

Showing the most recent 10 out of 1296 publications