Metabolomics Core The goals of the Metabolomics Core are to: 1. Provide consultation and training in metabolomic analysis. 2. Enable access to state-of-the-art instrumentation and services for metabolomic analysis. 3. Provide access to highly skilled personnel to aid in the analysis and interpretation of metabolomic data. 4. Develop and/or implement new technologies for metabolomics analysis beneficial to MDRC investigators. The Core owns, maintains, and operates a panel of MS and other instruments that are used to analyze metabolism and to perform metabolomic analyses. The Core accomplishes its goals by providing access to senior personnel versed in the use of technologies for metabolomic analysis. In addition Core personel provide consultation/guidance/training in the use of metabolomic analysis for MDRC members. The Core performs metabolomic analysis of specific metabolites and/or undirected metabolite analysis, and provides subsidies to reduce the cost of accessing these services for MDRC members, thus enhacing the research programs of all MDRC members (at all affilaited institutions) who have need of these services for their diabetes-related research.

Public Health Relevance

This research is relevant to the public health because it will increase our understanding of the events, at the level of changes metabolites, that underiie the development of diabetes and its complications, and hence will facilitate the development of improved diagnostic, prevention and treatment strategies

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-38
Application #
8775647
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
2015-11-30
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
38
Fiscal Year
2015
Total Cost
$74,758
Indirect Cost
$24,838
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Ammari, Zaid; Pak, Stella C; Ruzieh, Mohammed et al. (2018) Posttransplant Tacrolimus-Induced Diabetic Ketoacidosis: Review of the Literature. Case Rep Endocrinol 2018:4606491
Brown, Callie L; Perrin, Eliana M; Peterson, Karen E et al. (2018) Association of Picky Eating With Weight Status and Dietary Quality Among Low-Income Preschoolers. Acad Pediatr 18:334-341
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita et al. (2018) Ly6CHi Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arterioscler Thromb Vasc Biol 38:1102-1114
Lee, Jin-Sook; Caruso, Joseph A; Hubbs, Garrett et al. (2018) Molecular architecture of mouse and human pancreatic zymogen granules: protein components and their copy numbers. Biophys Rep 4:94-103
Yue, Yang; Blasius, T Lynne; Zhang, Stephanie et al. (2018) Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 217:1319-1334
Montrose, Luke; Padmanabhan, Vasantha; Goodrich, Jaclyn M et al. (2018) Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 13:301-309
Afshinnia, Farsad; Rajendiran, Thekkelnaycke M; Wernisch, Stefanie et al. (2018) Lipidomics and Biomarker Discovery in Kidney Disease. Semin Nephrol 38:127-141
Rodriquez, Erik J; Livaudais-Toman, Jennifer; Gregorich, Steven E et al. (2018) Relationships between allostatic load, unhealthy behaviors, and depressive disorder in U.S. adults, 2005-2012 NHANES. Prev Med 110:9-15
Morran, Michael P; Al-Dieri, Ali G; Nestor-Kalinoski, Andrea L et al. (2018) Insulin receptor based lymphocyte trafficking in the progression of type 1 diabetes. J Biol Methods 5:
Jiang, Youde; Liu, Li; Steinle, Jena J (2018) miRNA15a regulates insulin signal transduction in the retinal vasculature. Cell Signal 44:28-32

Showing the most recent 10 out of 1823 publications