- Animal Studies Core As it has for over a decade, the fee-for-service MDRC Animal Studies Core (ASC) (previously, the Animal Phenotyping Core- APC) provides state-of-the art equipment, services, training, and consultation regarding the detailed metabolic phenotyping of mouse and rat models of metabolic disease. T o address the previously unmet needs of MDRC members , the MDRC has invested in new technology and established a host of new services over the past five years . The ASC will continue to support these technologies and services, providing access to crucial equipment, expertise and training to empower specialized studies of rodent models of diabetes and related diseases. The ASC consists of four labs: 1) The Rat Metabolic Phenotyping Lab: includes the assessment of glucose homeostasis, whole animal metabolic assessment, body composition, and other specialized metabolic assessments in rats. 2) The Optogenetics and Behavioral Phenotyping Lab: provides training and access to optogenetic equipment to examine physiologic and behavioral responses to neural circuit manipulation, as well as with equipment to measure relevant behaviors, such as homeostatic and non-homeostatic feeding, activity, reward, and other behaviors that impact and/or are regulated by metabolic parameters in rodents. 3) The Continuous Glucose Monitoring Lab: provides continuous assessment of blood glucose concentrations in conscious, unrestrained rodents by radiotelemetry. This technology minimizes the stress of handling rodents and permits a detailed analysis of glucose fluctuations within normal feeding patterns and across extended time-frames. 4) The Islet Lab: provides islet isolation from mice and rats and ex vivo studies (including perifusion) of islets and other endocrine tissues. The ASC directly supports the goals of the MDRC. The services that the ASC provide are unique and are an important means to study rodent models of diabetes and related diseases, without which crucial aspects of diabetes-related research could not be accomplished. This core provides the necessary i nfrastructure to perform advanced, standardized, metabolic phenotyping of animal models of diabetes and related disorders that arise from genetic, pharmacologic, dietary, or other perturbations. The centralized equipment and services expedites research for many MDRC investigators in a cost-effective manner and provides access to complex metabolic techniques that they may not have otherwise.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-44
Application #
10071172
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2019-12-01
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
44
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Lee, Jin-Sook; Caruso, Joseph A; Hubbs, Garrett et al. (2018) Molecular architecture of mouse and human pancreatic zymogen granules: protein components and their copy numbers. Biophys Rep 4:94-103
Yue, Yang; Blasius, T Lynne; Zhang, Stephanie et al. (2018) Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 217:1319-1334
Ammari, Zaid; Pak, Stella C; Ruzieh, Mohammed et al. (2018) Posttransplant Tacrolimus-Induced Diabetic Ketoacidosis: Review of the Literature. Case Rep Endocrinol 2018:4606491
Brown, Callie L; Perrin, Eliana M; Peterson, Karen E et al. (2018) Association of Picky Eating With Weight Status and Dietary Quality Among Low-Income Preschoolers. Acad Pediatr 18:334-341
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita et al. (2018) Ly6CHi Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arterioscler Thromb Vasc Biol 38:1102-1114
Morran, Michael P; Al-Dieri, Ali G; Nestor-Kalinoski, Andrea L et al. (2018) Insulin receptor based lymphocyte trafficking in the progression of type 1 diabetes. J Biol Methods 5:
Jiang, Youde; Liu, Li; Steinle, Jena J (2018) miRNA15a regulates insulin signal transduction in the retinal vasculature. Cell Signal 44:28-32
Montrose, Luke; Padmanabhan, Vasantha; Goodrich, Jaclyn M et al. (2018) Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 13:301-309
Afshinnia, Farsad; Rajendiran, Thekkelnaycke M; Wernisch, Stefanie et al. (2018) Lipidomics and Biomarker Discovery in Kidney Disease. Semin Nephrol 38:127-141
Rodriquez, Erik J; Livaudais-Toman, Jennifer; Gregorich, Steven E et al. (2018) Relationships between allostatic load, unhealthy behaviors, and depressive disorder in U.S. adults, 2005-2012 NHANES. Prev Med 110:9-15

Showing the most recent 10 out of 1823 publications