? Microscopy Imaging and Cellular Physiology Core The Microscopy Imaging and Cellular Physiology (MICP) Core provides members of the Michigan Diabetes Research Center access to state of the art microscopy imaging, in situ hybridization, and electrophysiologic (including optogenetics) analysis, along with expert analysis and support. For over 20 years, the MICPC has provided researchers use of confocal and wide-field microscopes to allow a wide array of cellular and tissue imaging techniques including; imaging of fixed tissues and cells, quantification, co-localization, and live cell imaging including FRET and FRAP experiments. We have now added in situ hybridization analysis with fluorescent or radioisotope or chromogenic substrates for localization and/or quantification of mRNA. The core also has also developed an electrophysiology laboratory that enables the analysis of electrical and ionic changes in neurons, islets, or other relevant tissues, including optogentic activation of these tissues. Core personnel provide extensive expertise in imaging, in situ hybridization and electrophysiology, enabling MDRC investigators to rapidly develop novel experimental ideas and obtain high quality results with expert analysis. Core personnel provide structured service, maintenance and expertise in imaging and cell physiology and related experiments to support diabetes research at Michigan.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-44
Application #
10071179
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1996-12-01
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
44
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Steyn, Frederik J; Ngo, Shyuan T; Chen, Vicky Ping et al. (2018) 17?-estradiol acts through hypothalamic pro-opiomelanocortin expressing neurons to reduce feeding behavior. Aging Cell 17:
Schofield, Heather K; Tandon, Manuj; Park, Min-Jung et al. (2018) Pancreatic HIF2? Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cell Mol Gastroenterol Hepatol 5:169-185.e2
Zhao, Xu-Yun; Xiong, Xuelian; Liu, Tongyu et al. (2018) Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun 9:2986
Kim, Geun Hyang; Shi, Guojun; Somlo, Diane Rm et al. (2018) Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J Clin Invest 128:1125-1140
Elenbaas, Jared S; Bragazzi Cunha, Juliana; Azuero-Dajud, Rodrigo et al. (2018) Lamin A/C Maintains Exocrine Pancreas Homeostasis by Regulating Stability of RB and Activity of E2F. Gastroenterology 154:1625-1629.e8
Herman, William H; Pan, Qing; Edelstein, Sharon L et al. (2018) Erratum. Impact of Lifestyle and Metformin Interventions on the Risk of Progression to Diabetes and Regression to Normal Glucose Regulation in Overweight or Obese People With Impaired Glucose Regulation. Diabetes Care 2017;40:1668-1677. Diabetes Care 41:913
Rajala, Ammaji; Wang, Yuhong; Abcouwer, Steven F et al. (2018) Developmental and light regulation of tumor suppressor protein PP2A in the retina. Oncotarget 9:1505-1523
McCabe, Laura R; Parameswaran, Narayanan (2018) Advances in Probiotic Regulation of Bone and Mineral Metabolism. Calcif Tissue Int 102:480-488
Wood, Landon; Roelofs, Karen; Koch, Lauren G et al. (2018) Vertical sleeve gastrectomy corrects metabolic perturbations in a low-exercise capacity rat model. Mol Metab 11:189-196
Kycia, Ina; Wolford, Brooke N; Huyghe, Jeroen R et al. (2018) A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. Am J Hum Genet 102:620-635

Showing the most recent 10 out of 1823 publications