- Molecular Genetics Core Given the value of model organisms and molecular genetic tools for the study of diabetes and its co- morbidities, the Molecular Genetics Core (MGC) is designed to aid diabetes researchers in the development of novel rodent models and molecular tools to determine the cellular and molecular mechanisms contributing to diabetes. Established in 2015, the MGC is a fee-for-service core that facilitates the application of molecular genetic methods to diabetes-related research. Specifically, the MGC (1) designs and produces genetically- modified rodent models (using CRISPR/Cas9) for use in diabetes-related research; (2) designs and produces AAV vectors for use in diabetes research; (3) produces and provides specialty viral reagents for use in diabetes research; and (4) provides advice and training in the use of these technologies to members of MDRC laboratories. The MG Core also owns and maintains several pieces of shared equipment for the use of MDRC members located at different sites around the UM medical campus. While CRISPR/Cas9 technology has dramatically increased the speed and decreased the cost at which such models can be generated, the pace at which this new technology continues to evolve prevents many diabetes researchers from taking full advantage of its potential. The MGC fills this gap by using its expertise and personnel to design and construct CRISPR/Cas9 targeting reagents, collaborate with the UM Transgenic Core to test these reagents in embryos and produce founder mice, and identify founders for transfer (along with genotyping protocols) to the MDRC investigator. For the generation of viral reagents, the MGC designs and produces any necessary constructs, which are packaged into viruses by the UM Viral Vector Core. With input from MDRC members and the MGC advisory committee, the MGC also identifies and develops new technologies (viral and genetic) in support of the research programs of MDRC members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-44
Application #
10071180
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1996-12-01
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
44
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Perkins, Bruce A; Lovblom, Leif E; Bril, Vera et al. (2018) Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 61:1856-1861
Pearson, Gemma; Chai, Biaoxin; Vozheiko, Tracy et al. (2018) Clec16a, Nrdp1, and USP8 Form a Ubiquitin-Dependent Tripartite Complex That Regulates ?-Cell Mitophagy. Diabetes 67:265-277
Yu, Jingcheng; Koenig, Ronald J (2018) Thyroid-Specific PPAR? Deletion Is Benign in the Mouse. Endocrinology 159:1463-1468
Griffin, Cameron; Eter, Leila; Lanzetta, Nico et al. (2018) TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J Biol Chem 293:8775-8786
Jun, Goo; Manning, Alisa; Almeida, Marcio et al. (2018) Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proc Natl Acad Sci U S A 115:379-384
Ward, Kristen M; Yeoman, Larisa; McHugh, Cora et al. (2018) Atypical Antipsychotic Exposure May Not Differentiate Metabolic Phenotypes of Patients with Schizophrenia. Pharmacotherapy 38:638-650
Khan, Sabbir; Kowluru, Anjaneyulu (2018) CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem Biophys Res Commun 495:2221-2226
Wang, Luhong; Burger, Laura L; Greenwald-Yarnell, Megan L et al. (2018) Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor ? in Adult Female Mice. J Neurosci 38:1061-1072
Gregg, Brigid E; Botezatu, Nathalie; Brill, Joshua D et al. (2018) Gestational exposure to metformin programs improved glucose tolerance and insulin secretion in adult male mouse offspring. Sci Rep 8:5745
Semple, Erin; Hill, Jennifer W (2018) Sim1 Neurons Are Sufficient for MC4R-Mediated Sexual Function in Male Mice. Endocrinology 159:439-449

Showing the most recent 10 out of 1823 publications