Diabetes Models Phenotyping Core The Diabetes Models Phenotyping Core of the Washington University Diabetes Research Center (DRC) has a long-term goal of enhancing diabetes-related research at Washington University through the use of sophisticated services and technologies likely to contribute to discoveries that can be translated to novel treatments for diabetes and its complications. The three objectives of the Core are: 1) To provide phenotyping services to DRC members in order to facilitate NIH-funded diabetes/metabolism-related research and enhance the cost-effectiveness of that research; 2) To train DRC investigators in the maintenance and manipulation of mouse colonies relevant to diabetes and metabolic research; and 3) To develop new research capabilities to enhance the ability of DRC members to perform diabetes and metabolic research. The Core fulfills an important need in the diabetes research community with 52 DRC investigators utilizing services during the past funding period. Over this time frame, the Core provided extensive support that included more than 7,000 biochemical assays of serum, more than 4,400 determinations of mouse body composition, and more than 1,000 indirect calorimetry assessments in mice, to mention the services in greatest demand. Evidence of considerable Core evolution include: elimination of some services, institution of better defined quality control, expanded training to include rigorous approaches to normalizing energy balance and other issues (all in response to criticisms at the time of the last competitive renewal), addition of new instrumentation, upgrades to existing instrumentation, increased physical size of the Core, and improved operational flow. Over this current project period, Diabetes Models Phenotyping Core support helped users contribute a series of important scholarly advances with substantial potential for translation to improved care for people with diabetes.

Public Health Relevance

Diabetes Models Phenotyping Core Diabetes and its related metabolic disorders are serious public health problems that lead to death and disability. Diabetes can be mimicked in animal models, and the study of these models can lead to new treatments with the potential to decrease the suffering from diabetes and its complications. The Diabetes Models Phenotyping Core facility has a goal of supporting scientists who study animal models of diabetes so that novel approaches can be identified to improve the health of people with diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020579-42
Application #
9657018
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2018-12-01
Project End
2022-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
42
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lin, Meei-Hua; Miller, Joseph B; Kikkawa, Yamato et al. (2018) Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome. J Am Soc Nephrol 29:1426-1436
Evans, Trent D; Jeong, Se-Jin; Zhang, Xiangyu et al. (2018) TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 14:724-726
Liu, Hui; Jin, Hongjun; Han, Junbin et al. (2018) Upregulated Sphingosine 1-Phosphate Receptor 1 Expression in Human and Murine Atherosclerotic Plaques. Mol Imaging Biol 20:448-456
Sidhu, Rohini; Mikulka, Christina R; Fujiwara, Hideji et al. (2018) A HILIC-MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum. Biomed Chromatogr 32:e4235
Turk, John; White, Tayleur D; Nelson, Alexander J et al. (2018) iPLA2? and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids :
Wang, Songyan; Oestricker, Lauren Z; Wallendorf, Michael J et al. (2018) Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance. PLoS One 13:e0192441
Higgins, Cassandra B; Zhang, Yiming; Mayer, Allyson L et al. (2018) Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPAR?. JCI Insight 3:
Chondronikola, Maria; Magkos, Faidon; Yoshino, Jun et al. (2018) Effect of Progressive Weight Loss on Lactate Metabolism: A Randomized Controlled Trial. Obesity (Silver Spring) 26:683-688
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 97:1284-1298.e7
Cahill, Alison G; Haire-Joshu, Debra; Cade, W Todd et al. (2018) Weight Control Program and Gestational Weight Gain in Disadvantaged Women with Overweight or Obesity: A Randomized Clinical Trial. Obesity (Silver Spring) 26:485-491

Showing the most recent 10 out of 654 publications