Metabolic Tissue Function Core The purpose of the Metabolic Tissue Function Core is to improve the efficiency of diabetes-related research through provision of expertise, equipment, and services that optimize the investigational capacity of Diabetes Research Center (DRC) members. The Core facilitates acquisition of high quality rodent and human islets and assists investigators in developing induced pluripotent stem cells. In addition, the Core provides services for the functional analyses of islets and other metabolic tissues relevant to the pathogenesis of diabetes and its complications. These functional studies include hormone secretion assays, assessment of ?-cell mass, quantification of metabolism, and assessment of endoplasmic reticulum stress and oxidative stress pathways. The expertise and state-of-the-art equipment provided by the Core improve the efficiency of research focused on improving the diagnosis, treatment and cure of diabetes.

Public Health Relevance

Metabolic Tissue Function Core The Metabolic Tissue Function Core provides expertise, services, and specialized equipment required for the study of pancreatic islets and other metabolic tissues. The Core thus assists DRC investigators in the pursuit of insights into the etiology and consequences of diabetes, information critical for developing new treatments for diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020579-43
Application #
9851902
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
43
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hughes, Jing W; Bao, Yicheng K; Salam, Maamoun et al. (2018) Late-Onset T1DM and Older Age Predict Risk of Additional Autoimmune Disease. Diabetes Care :
Zhang, Xiangyu; Evans, Trent D; Jeong, Se-Jin et al. (2018) Classical and alternative roles for autophagy in lipid metabolism. Curr Opin Lipidol 29:203-211
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Disrupted cholesterol metabolism promotes age-related photoreceptor neurodegeneration. J Lipid Res 59:1414-1423
Ban, Norimitsu; Lee, Tae Jun; Sene, Abdoulaye et al. (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3:
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Weber, Kassandra J; Sauer, Madeline; He, Li et al. (2018) PPAR? Deficiency Suppresses the Release of IL-1? and IL-1? in Macrophages via a Type 1 IFN-Dependent Mechanism. J Immunol 201:2054-2069
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 98:861-864
Bao, Yicheng K; Salam, Maamoun; Parks, Deborah et al. (2018) High prevalence of systemic rheumatic diseases in women with type 1 diabetes. J Diabetes Complications 32:737-739
Liss, Kim H H; McCommis, Kyle S; Chambers, Kari T et al. (2018) The impact of diet-induced hepatic steatosis in a murine model of hepatic ischemia/reperfusion injury. Liver Transpl 24:908-921
Colleluori, Georgia; Chen, Rui; Napoli, Nicola et al. (2018) Fat Mass Follows a U-Shaped Distribution Based on Estradiol Levels in Postmenopausal Women. Front Endocrinol (Lausanne) 9:315

Showing the most recent 10 out of 654 publications