Metabolic Tissue Function Core The purpose of the Metabolic Tissue Function Core is to improve the efficiency of diabetes-related research through provision of expertise, equipment, and services that optimize the investigational capacity of Diabetes Research Center (DRC) members. The Core facilitates acquisition of high quality rodent and human islets and assists investigators in developing induced pluripotent stem cells. In addition, the Core provides services for the functional analyses of islets and other metabolic tissues relevant to the pathogenesis of diabetes and its complications. These functional studies include hormone secretion assays, assessment of ?-cell mass, quantification of metabolism, and assessment of endoplasmic reticulum stress and oxidative stress pathways. The expertise and state-of-the-art equipment provided by the Core improve the efficiency of research focused on improving the diagnosis, treatment and cure of diabetes.

Public Health Relevance

Metabolic Tissue Function Core The Metabolic Tissue Function Core provides expertise, services, and specialized equipment required for the study of pancreatic islets and other metabolic tissues. The Core thus assists DRC investigators in the pursuit of insights into the etiology and consequences of diabetes, information critical for developing new treatments for diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020579-43
Application #
9851902
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
43
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Turecamo, S E; Walji, T A; Broekelmann, T J et al. (2018) Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol 67:1-14
Lin, Jonathan B; Moolani, Harsh V; Sene, Abdoulaye et al. (2018) Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration. JCI Insight 3:
Hoekel, James; Narayanan, Anagha; Rutlin, Jerrel et al. (2018) Visual pathway function and structure in Wolfram syndrome: patient age, variation and progression. BMJ Open Ophthalmol 3:e000081
Zayed, Mohamed A; Hsu, Fong-Fu; Patterson, Bruce W et al. (2018) Diabetes adversely affects phospholipid profiles in human carotid artery endarterectomy plaques. J Lipid Res 59:730-738
Mikhalkova, Deana; Holman, Sujata R; Jiang, Hui et al. (2018) Bariatric Surgery-Induced Cardiac and Lipidomic Changes in Obesity-Related Heart Failure with Preserved Ejection Fraction. Obesity (Silver Spring) 26:284-290
Abraham, Manjusha; Collins, Christina A; Flewelling, Scott et al. (2018) Mitochondrial inefficiency in infants born to overweight African-American mothers. Int J Obes (Lond) 42:1306-1316
Hsu, Fong-Fu (2018) Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal Bioanal Chem 410:6387-6409
Yamaguchi, Shintaro; Moseley, Anna C; Almeda-Valdes, Paloma et al. (2018) Diurnal Variation in PDK4 Expression Is Associated With Plasma Free Fatty Acid Availability in People. J Clin Endocrinol Metab 103:1068-1076
Rusconi, B; Jiang, X; Sidhu, R et al. (2018) Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep 8:10984
Chen, Yana; McCommis, Kyle S; Ferguson, Daniel et al. (2018) Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology 159:609-621

Showing the most recent 10 out of 654 publications