The Vanderbilt Diabetes Research and Training Center (VDRTC), in its 38th continuous year of operation as a NIH-sponsored Diabetes Center, seeks to continue its efforts to facilitate the discovery, application, and translation of scientifc knowledge to improve the care of patients with diabetes. The VDRTC is an interdisciplinary program involving 126 participating faculty distributed among 15 departments in two schools and four colleges at Vanderbilt and neighboring Mehary Medical College. The VDRTC consists of: 1) Administrative Component that coordinates the scientific, organizational, and outreach activities;2) Biomedical Research Component that recruits and selects VDRTC-affiliated investigators and supervises the research cores that facilitate and enhance their research;3) Pilot and Feasibility Program that facilitates the development of new investigators into independent scientists and encourages scientists in other fields to enter the field of diabetes research;and 4) Enrichment, Training, and Outreach Program that fosters an environment conducive to collaborative, interdisciplinary research (seminar series. Diabetes Day), and to training new diabetes scientists (VDRTC oversees three NIDDK-funded diabetes-related training programs). NIH support for the VDRTC is greatly amplified by: 1) Vanderbilt's sustained commitment to provide research space and additional financial resources;2) a diverse, comprehensive array of research core services at Vanderbilt, which allows NIH funds to target unique, diabetes-related research cores;and 3) collaborative efforts with other NIH-funded research centers at Vanderbilt. The VDRTC is evolving and dynamic, including additions to its investigator base, expansion of VDRTC research areas, expanded focus on clinical and translational research, realignment and evolution of core support to provide unique, indispensable core services, and service as a regional and national resource for the diabetes research community. Because of the VDRTC and the environment it creates, VDRTC-affiliated investigators have made important scientific contributions related to diabetes, obesity, and metabolism.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020593-36
Application #
8636427
Study Section
Special Emphasis Panel (ZDK1-GRB-S (J1))
Program Officer
Hyde, James F
Project Start
1996-12-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
36
Fiscal Year
2014
Total Cost
$1,542,277
Indirect Cost
$553,638
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Brissova, Marcela; Haliyur, Rachana; Saunders, Diane et al. (2018) ? Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Rep 22:2667-2676
Kook, Seunghyi; Qi, Aidong; Wang, Ping et al. (2018) Gene-edited MLE-15 Cells as a Model for the Hermansky-Pudlak Syndromes. Am J Respir Cell Mol Biol 58:566-574
Schlegel, Cameron; Weis, Victoria G; Knowles, Byron C et al. (2018) Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig Dis Sci 63:356-365
Harris, Nicholas A; Isaac, Austin T; G√ľnther, Anne et al. (2018) Dorsal BNST ?2A-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. J Neurosci 38:8922-8942
Wilson, Christopher S; Chhabra, Preeti; Marshall, Andrew F et al. (2018) Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice. Diabetes 67:2349-2360
Ehrlicher, Sarah E; Stierwalt, Harrison D; Newsom, Sean A et al. (2018) Skeletal muscle autophagy remains responsive to hyperinsulinemia and hyperglycemia at higher plasma insulin concentrations in insulin-resistant mice. Physiol Rep 6:e13810
Hughey, Curtis C; Trefts, Elijah; Bracy, Deanna P et al. (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944-11954
Hulgan, Todd (2018) Factors Associated With Insulin Resistance in Adults With HIV Receiving Contemporary Antiretroviral Therapy: a Brief Update. Curr HIV/AIDS Rep 15:223-232
Yao, Lina; Seaton, Sarah Craven; Ndousse-Fetter, Sula et al. (2018) A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7:
Vierra, Nicholas C; Dickerson, Matthew T; Jordan, Kelli L et al. (2018) TALK-1 reduces delta-cell endoplasmic reticulum and cytoplasmic calcium levels limiting somatostatin secretion. Mol Metab 9:84-97

Showing the most recent 10 out of 697 publications