The Hormone Assay and Analytical Services Core (HAASC) provides assistance to investigators in the measurement of hormones, amino acids ( concentration and specific activity), glucose enrichment, lipids, nucleotides, and markers of oxidative stress in biologic fluids and tissue samples. The core provides space, equipment and personnel that performs sample analysis and method development. Investigators pay a fee for service that covers the cost of regents, supplies, a percentage of personnel salary and pro-rated service contracts. Over the last grant cycle this core has dramatically evolved. With support from the institution the core has purchased equipment that will lower overall cost and decrease turnaround time for our standard high throughput assays and are continuing to offer cost effective new hormone assays to our investigators. The core has developed NMR assays to assess the enrichment of glucose (C2/C5), which is a marker of gluconeogenesis. We have expanded the scope of our services as the needs of VDRTC members change. The core assayed over 30,000 samples in the past year for 32 Vanderbilt investigators and 7 non-Vanderbilt investigators. Over the past grant cycle it provided data to support over 150 publications. The HAASC is jointly supported by the VDRTC and the NIDDK-funded Mouse Metabolic Phenotyping Center. This cooperative arrangement allows the core to offer a wide range of services in a non-overlapping, cost efficient manner. The core is part of the Vanderbilt Core Ordering & Reporting Enterprise Systemtm, which provides an efficient billing system and oversight and governance for the core. The Hormone Assay and Analytical Services Core, in operation for more than 30 years, continues to provide essential services that support the research of DRTC-affiliated investigators in the next funding cycle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
4P30DK020593-38
Application #
9049477
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2016-04-29
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
38
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Creecy, Amy; Uppuganti, Sasidhar; Unal, Mustafa et al. (2018) Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 110:204-214
Wang, Feng; Katagiri, Daisuke; Li, Ke et al. (2018) Assessment of renal fibrosis in murine diabetic nephropathy using quantitative magnetization transfer MRI. Magn Reson Med 80:2655-2669
Russart, Kathryn L G; Huk, Danielle; Nelson, Randy J et al. (2018) Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 98:121-129
Santos Guasch, Gabriela L; Beeler, J Scott; Marshall, Clayton B et al. (2018) p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. iScience 8:236-249
Marks, Christian R; Shonesy, Brian C; Wang, Xiaohan et al. (2018) Activated CaMKII? Binds to the mGlu5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Mol Pharmacol 94:1352-1362
Kovtun, Oleg; Tomlinson, Ian D; Bailey, Danielle M et al. (2018) Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 706:741-752
Coppola, Jennifer J; Disney, Anita A (2018) Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 8:e01071
Burke, Susan J; Batdorf, Heidi M; Burk, David H et al. (2018) Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet ?-cell de-differentiation. Mol Metab :
Zhu, Lin; Luu, Thao; Emfinger, Christopher H et al. (2018) CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes 67:2494-2506
Choksi, Yash A; Reddy, Vishruth K; Singh, Kshipra et al. (2018) BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol 11:1363-1374

Showing the most recent 10 out of 697 publications