An Animal Models and Physiology Core has been a unit of the DRTC since 1991. It was initially established to assist investigators in the generation of genetically modified mice. The Core has continued to evolve during the past funding period and now includes Mouse Metabolic Phenotyping as a service. The Animal Model and Physiology Core provides to Center members via access to a wide array of resources, technology, equipment and services for the generation and study of genetically modified mice and other model organisms in diabetes-related research, consultation on experimental design and analysis, repositories (mouse and human ES cells, mouse models), technology development (large-scale analysis of pancreatic islets from mice to man) and opportunities for collaboration. Some services are widely used (e.g. generation of transgenic and knockout mice and metabolic phenotyping) whereas others less so (advice and training in human ES cells). Nonetheless, rather than discontinuing unique or very specialized but rarely used services, we still list them on the DRTC website since future needs of members cannot be predicted and the leadership believes strongly that including them allows members to consider all available technologies in planning their research. Drs. Manami Hara and Anita Chong will continue to serve as Director and Co-Director of this Core. They will also be assisted by Technical Directors for Transgenic/ES Cell Technology (Degenstein) and Mouse Metabolic Phenotyping (Ye). The Core will have an internal advisory panel comprised of investigators using model organisms for diabetes/metabolism-related research: mice (Bass, Bell and Nobrega), zebrafish (Prince), Drosophila (Kreitman) and C. elegans (Ruvinsky). This organization will ensure that Core services are at the forefront of model organism studies and responsive to the needs of DRTC members.

Public Health Relevance

The Animal Models Core provides services, advice and hands-on-training for the generation and use of model organisms including mice, Zebrafish, Drosophiia and C elegans in the study of diabetes and metabolism. It facilitates the generation of useful models for studying pancreatic beta cells and the biology and physiology of genes implicated in the development of diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020595-40
Application #
9213365
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
2018-06-04
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
40
Fiscal Year
2017
Total Cost
$167,921
Indirect Cost
$61,895
Name
University of Chicago
Department
Type
Domestic Higher Education
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Sun, Juan; Mao, Liqun; Yang, Hongyan et al. (2018) Critical role for the Tsc1-mTORC1 pathway in ?-cell mass in Pdx1-deficient mice. J Endocrinol 238:151-163
Khan, Md Wasim; Ding, Xianzhong; Cotler, Scott J et al. (2018) Studies on the Tissue Localization of HKDC1, a Putative Novel Fifth Hexokinase, in Humans. J Histochem Cytochem 66:385-392
Sanyoura, May; Jacobsen, Laura; Carmody, David et al. (2018) Pancreatic Histopathology of Human Monogenic Diabetes Due to Causal Variants in KCNJ11, HNF1A, GATA6, and LMNA. J Clin Endocrinol Metab 103:35-45
Palygin, Oleg; Ilatovskaya, Daria V; Levchenko, Vladislav et al. (2018) Nitric oxide production by glomerular podocytes. Nitric Oxide 72:24-31
Letourneau, Lisa R; Greeley, Siri Atma W (2018) Congenital Diabetes: Comprehensive Genetic Testing Allows for Improved Diagnosis and Treatment of Diabetes and Other Associated Features. Curr Diab Rep 18:46
Sanyoura, May; Philipson, Louis H; Naylor, Rochelle (2018) Monogenic Diabetes in Children and Adolescents: Recognition and Treatment Options. Curr Diab Rep 18:58
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Letourneau, Lisa R; Greeley, Siri Atma W (2018) Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 50:25-34
Vierra, Nicholas C; Dickerson, Matthew T; Philipson, Louis H et al. (2018) Simultaneous Real-Time Measurement of the ?-Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on ?-Cell Function. Methods Mol Biol 1684:73-84
Xiao, Xiangwei; Guo, Ping; Shiota, Chiyo et al. (2018) Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 22:78-90.e4

Showing the most recent 10 out of 298 publications