Excess adipose tissue is the defining characteristic of obesity. The phenotype and function of adipose tissue are closely associated with many metabolic diseases, including type 2 diabetes mellitus, non-alcoholic fatty liver disease and dyslipidemia. Understanding adipose tissue function and biogenesis are critical to gain insights into the development of obesity and its co-morbidities. The New York Obesity Nutrition Research Center (NYONRC) includes about 50 federally-funded investigators. The Adipose Tissue Core (AT Core) provides an efficient and cost-effective means for investigators in our research base to study the characteristics and functions of adipose tissue in normal biology and pathologic states. Rationale for Adipose Tissue Core: The NYONRC has a large cadre of NIH-funded investigators who vary widely in their expertise and areas of investigation. To many of these investigators, characterizing the phenotype and function of adipose tissue is critical for their studies. The AT Core brings together the expertise and equipment to provide comprehensive adipose tissue analysis, which would otherwise be unavailable or significantly more expensive for individual NYONRC investigators. One example is that in the AT Core the sizing of adipocytes through histologic analysis of many sections of adipose tissue employs a Nikon light microscope with an automated stage system, CD camera and software that identifies and measures the size of each individual adipocyte in a field. Another example is that FACS analyses that the AT Core performs for NYONRC investigators requires development and validation of protocols for each combination of fluorescently tagged antibodies and the maintenance of two expensive FACS machines. The equipment required for these services was purchased by Columbia University. Because the NYONRC leverages the investments in equipment made by Columbia University, the AT Core is able to provide services that would otherwise be unavailable to NYONRC investigators or significantly more expensive.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK026687-34
Application #
8639523
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
34
Fiscal Year
2014
Total Cost
Indirect Cost
Name
St. Luke's-Roosevelt Institute for Health Sciences
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10019
Espeland, Mark A; Luchsinger, Jose A; Neiberg, Rebecca H et al. (2018) Long Term Effect of Intensive Lifestyle Intervention on Cerebral Blood Flow. J Am Geriatr Soc 66:120-126
Liu, Shunmei; Marcelin, Genevieve; Blouet, Clemence et al. (2018) A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol Metab 8:37-50
Cheng, X; Zhang, Y; Wang, C et al. (2018) The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population. Eur J Clin Nutr 72:1567-1575
Fang, Hongjuan; Berg, Elizabeth; Cheng, Xiaoguang et al. (2018) How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care 21:360-365
Stratigopoulos, George; De Rosa, Maria Caterina; LeDuc, Charles A et al. (2018) DMSO increases efficiency of genome editing at two non-coding loci. PLoS One 13:e0198637
Schwartz, Gary J (2018) Roles for gut vagal sensory signals in determining energy availability and energy expenditure. Brain Res 1693:151-153
Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei et al. (2018) Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake. PLoS Biol 16:e2004399
Carli, Jayne F Martin; LeDuc, Charles A; Zhang, Yiying et al. (2018) The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function. FASEB J 32:3946-3956
Gallagher, Dympna; Rosenn, Barak; Toro-Ramos, Tatiana et al. (2018) Greater Neonatal Fat-Free Mass and Similar Fat Mass Following a Randomized Trial to Control Excess Gestational Weight Gain. Obesity (Silver Spring) 26:578-587
Rosenbaum, Michael; Goldsmith, Rochelle L; Haddad, Fadia et al. (2018) Triiodothyronine and leptin repletion in humans similarly reverse weight-loss induced changes in skeletal muscle. Am J Physiol Endocrinol Metab :

Showing the most recent 10 out of 809 publications