When the UNC Center for Gastrointestinal Biology and Disease was initially established it emphasized analysis of epithelial transport, grovrth, development, and repair, including control of these functions by subepithelial immune and mesenchymal cells. From the outset, it was recognized that a Core Facility capable of measuring levels of soluble signaling molecules (such as peptide hormones, growth factors, eicosanoids, cytokines, and cyclic nucleotides) would be essential to investigators pursuing these goals. For this reason, an Immunoassay (IA) Core was established, and staffed with a Core Director (Dr. Don Powell) and a Core Technician. In 1991, Dr. Michael Goy replaced Dr. Powell as the IA Core Director. Due to steadily increasing demand for Core services, an additional half-time technician was hired in 2002. In January 2008, Scott Plevy replaced Michael Goy as IT Core Director. The strategic reason for this change was Dr. Plevy's expertise in cytokine biology and quantitative technologies, which historically has comprised the predominant usage of the core. In addition. Dr. Plevy brought new expertise in biomarker development and immune monitoring, which as described, will become new initiatives of the Core based on the prospective needs of CGIBD members. In April 2008, Carlton Anderson became the new IT Core Technician and Assistant Director. Mr. Anderson provides a wealth of laboratory experience and expertise. He has rapidly assimilated techniques for the most commonly requested ELISAs, has been trained on all existing equipment, and has developed, under the guidance of Dr. Plevy, new cost effective technologies for the Core. In parallel with these personnel changes, the objectives ofthe IT Core have also evolved and expanded. As the focus ofthe Center has shifted from diarrheal to inflammatory diseases and cancer, the needs of Center members have shifted and the IT Core has acquired new capabilities. From an initial repertoire of three immunoassays performed for a few investigators, the Core now serves a client base of over 50 laboratories, and offers a sophisticated array of services, including (a) over 50 diffierent types of ELISA and RIA measurements, (b) custom immunoassay development, and (c) quantitative multiplex proteomic analysis that can be adapted to numerous applications. During the last funding cycle, as described elsewhere in this application, the proteomic component ofthe IT Core was eliminated. This decision reflects the existence of multiple cores on campus that provide cost-eff^ective proteomic analysis, and followed polling and approval of CGIBD executive committee who concluded that such technology is no longer a high priority. To provide expanded and significantly more cost-effective services to the CGIBD community. Dr. Plevy initiated new cytokine ELISA development for the most requested cytokine assays based on established technology in CGIBD investigator's laboratories. Mr. Anderson has already negotiated better prices for standard ELISA kits;therefore, CGIBD investigators immediately benefitted by a 10- 35% reduction in costs for services provided. With increased emphasis on translational research, the IT Core has embarked upon several new initiatives. An emphasis of the IT Core moving forward, facilitated by the acquisition of new technology platforms and thematically consistent vnth the NIH Roadmap, will be biomarker development vnth an emphasis on human studies. We are now performing multiplex protein analysis using xMAP technology. We have negotiated vnth Bio-Rad and R and D Systems toreceive discounted prices on multiplex kits for the Core's Bio-Plex 200 system which vnll facilitate human and murine research, and contribute to biomarker development. Additionally, we are planning an on-site symposium to better acquaint investigators with the multiplex platform. We have also established collaboration with Glycominds, Inc. to develop ELISA-based serological markers directed against the enteric microbiota in human inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and inflammatory liver diseases. Finally, as a result of recent NIH funded and industry sponsored activities of several Center investigators, the Core has taken an interest in immune monitoring in IBD patients, including but not limited to, immunogenicity and vaccine monitoring, and immunocompetence and reconstitution during therapeutic interventions. Development of this technology will be applicable across many GI disorders where assessing subtle effects on the human immune system vnll be critical to understand safety and efficacy of clinical interventions, including trials of vaccinations, cellular therapy, drug therapy, cancer immunotherapy, transplantation, and autoimmune/inflammatory disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK034987-25
Application #
7764477
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Project Start
2010-03-15
Project End
2014-11-30
Budget Start
2010-03-15
Budget End
2010-11-30
Support Year
25
Fiscal Year
2010
Total Cost
$138,206
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Weiser, Matthew; Simon, Jeremy M; Kochar, Bharati et al. (2018) Molecular classification of Crohn's disease reveals two clinically relevant subtypes. Gut 67:36-42
Pollard, Katharine L; Campbell, Christina; Squires, Megan et al. (2018) Seasonal Association of Pediatric Functional Abdominal Pain Disorders and Anxiety. J Pediatr Gastroenterol Nutr 67:18-22
Ellermann, Melissa; Sartor, R Balfour (2018) Intestinal bacterial biofilms modulate mucosal immune responses. J Immunol Sci 2:13-18
Kaelberer, Melanie Maya; Buchanan, Kelly L; Klein, Marguerita E et al. (2018) A gut-brain neural circuit for nutrient sensory transduction. Science 361:
Kochar, Bharati; Barnes, Edward L; Long, Millie D et al. (2018) Depression Is Associated With More Aggressive Inflammatory Bowel Disease. Am J Gastroenterol 113:80-85
Tappata, Manaswita; Eluri, Swathi; Perjar, Irina et al. (2018) Association of mast cells with clinical, endoscopic, and histologic findings in adults with eosinophilic esophagitis. Allergy 73:2088-2092
Schulfer, Anjelique F; Battaglia, Thomas; Alvarez, Yelina et al. (2018) Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol 3:234-242
Dong, Jing; Buas, Matthew F; Gharahkhani, Puya et al. (2018) Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and Genetic Variants. Gastroenterology 154:1273-1281.e3
Azcarate-Peril, M Andrea; Butz, Natasha; Cadenas, Maria Belen et al. (2018) An Attenuated Salmonella enterica Serovar Typhimurium Strain and Galacto-Oligosaccharides Accelerate Clearance of Salmonella Infections in Poultry through Modifications to the Gut Microbiome. Appl Environ Microbiol 84:
Carlson, Alexander L; Xia, Kai; Azcarate-Peril, M Andrea et al. (2018) Infant Gut Microbiome Associated With Cognitive Development. Biol Psychiatry 83:148-159

Showing the most recent 10 out of 944 publications