The objective of the Genetics Core is to promote and facilitate genetic studies of diabetes and its complications in humans and animal models at the Joslin Diabetes Center and other collaborating institutions. To this end, the Core provides resources in the form of repositories of DNA and support services for genetic studies, such as genotyping and assistance with data analysis. Such functions of the Genetics Core will be expanded during the next funding period to meet the increasing interest in genetic studies spurred by the availability of the human genome sequence, the improved knowledge of genetic variation, and the development of cost-effective genotyping methods allowing genetic studies of unprecedented scale. The following are the objectives for the next funding period: 1. Expand the collection of well-characterized DNA samples by leveraging ongoing clinical research projects so that the potential of Joslin Diabetes Center's patient base is fully exploited. 2. Expand the support services for genetic studies by upgrading the single nucleotide polymorphism (SNP) genotyping service from low to medium throughput and provide basic genetic profiles of the DNA samples in the Core's collections. 3. Build a strong database to link genetic data across all studies in order to synergistically enhance the value of any one study and enable cross-experiment analyses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-25
Application #
8249904
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2012-08-31
Budget Start
2011-04-01
Budget End
2013-03-31
Support Year
25
Fiscal Year
2011
Total Cost
$186,781
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Commissariat, Persis V; Volkening, Lisa K; Guo, Zijing et al. (2018) Associations between major life events and adherence, glycemic control, and psychosocial characteristics in teens with type 1 diabetes. Pediatr Diabetes 19:85-91
Barbour, Linda A; Scifres, Christina; Valent, Amy M et al. (2018) A cautionary response to SMFM statement: pharmacological treatment of gestational diabetes. Am J Obstet Gynecol 219:367.e1-367.e7
Lammer, Jan; Karst, Sonja G; Lin, Michael M et al. (2018) Association of Microaneurysms on Adaptive Optics Scanning Laser Ophthalmoscopy With Surrounding Neuroretinal Pathology and Visual Function in Diabetes. Invest Ophthalmol Vis Sci 59:5633-5640
Gordin, Daniel; King, George L (2018) Response to Comment on Gordin et al. Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care 2018;41:815-822. Diabetes Care 41:e128
Karatepe, Kutay; Zhu, Haiyan; Zhang, Xiaoyu et al. (2018) Proteinase 3 Limits the Number of Hematopoietic Stem and Progenitor Cells in Murine Bone Marrow. Stem Cell Reports 11:1092-1105
Sustarsic, Elahu G; Ma, Tao; Lynes, Matthew D et al. (2018) Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metab 28:159-174.e11
Lessard, Sarah J; MacDonald, Tara L; Pathak, Prerana et al. (2018) JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat Commun 9:3030
Cardamone, Maria Dafne; Tanasa, Bogdan; Cederquist, Carly T et al. (2018) Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 69:757-772.e7
Solheim, Marie H; Winnay, Jonathon N; Batista, Thiago M et al. (2018) Mice Carrying a Dominant-Negative Human PI3K Mutation Are Protected From Obesity and Hepatic Steatosis but Not Diabetes. Diabetes 67:1297-1309
Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu et al. (2018) 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab 27:1111-1120.e3

Showing the most recent 10 out of 1120 publications