Much of the research at Joslin focuses on gaining an understanding of type 1 and type 2 diabetes at the cellular level. This includes studies of the cellular development of pancreafic beta cells, studies of the development and inflammafion of metabolically active muscle and adipose cells, and studies of the mediators and modifiers of autoimmunity toward beta cells. All of these research areas require analysis and isolation of well-defined, pure, populations of live cells. Flow cytometry and cell sorting within the Flow Core meet this need. Fluorescence activated cell sorting is currently the best method for rapid isolation of very well defined and highly purified, live cells. The Joslin Flow Cytometry Core's primary mission is to provide reliable and affordable cell sorting and flow cytometry services to its users, so that they can isolate, analyze, and study cells that increase our understanding of diabetes and its complications, and ultimately develop treatments and cures for these diseases. Cell sorting technology is confinuously evolving and improving, enabling new approaches to questions in diabetes research. Therefore, a second mission of the Flow Core is to confinually update and modernize to offer the most cutting edge cell sorting technology to its users. In addifion, because flow cytometry is traditionally thought of as an immunology tool, the Joslin Core's mission includes acfivifies that enhance the use of flow cytometry in other research areas, bringing this technology to new users and stimulating new avenues of diabetes research. The specific goals of the Core are: 1. To offer to Joslin researchers the use of reliable, well maintained, cutting edge, and cost-effective cell sorting and analysis machines. 2. To provide education and training to Joslin researchers regarding potential applications of flow cytometry. 3. To confinually update instrumentafion in response to new and cutfing-edge technology developments, including upgrades to exisfing instruments, addifion of new instrumentafion, and establishment of collaborative arrangements to help develop and evaluate new technology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-27
Application #
8545768
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
27
Fiscal Year
2013
Total Cost
$181,805
Indirect Cost
$59,288
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Mulla, Christopher M; Middelbeek, Roeland J W; Patti, Mary-Elizabeth (2018) Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 1411:53-64
Skupien, Jan; Smiles, Adam M; Valo, Erkka et al. (2018) Variations in Risk of End-Stage Renal Disease and Risk of Mortality in an International Study of Patients With Type 1 Diabetes and Advanced Nephropathy. Diabetes Care :
Laffel, L (2018) Lost in transition: finding a path forward for young adults with Type 1 diabetes. Diabet Med 35:1061-1062
Bauman, Viviana; Sturkey, Adaya C; Sherafat-Kazemzadeh, Rosa et al. (2018) Factitious hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 19:823-831
Rao, Tata Nageswara; Gupta, Manoj K; Softic, Samir et al. (2018) Attenuation of PKC? enhances metabolic activity and promotes expansion of blood progenitors. EMBO J 37:
Park, Kyoungmin; Li, Qian; Evcimen, Net Da? et al. (2018) Exogenous Insulin Infusion Can Decrease Atherosclerosis in Diabetic Rodents by Improving Lipids, Inflammation, and Endothelial Function. Arterioscler Thromb Vasc Biol 38:92-101
Stanford, Kristin I; Rasmussen, Morten; Baer, Lisa A et al. (2018) Paternal Exercise Improves Glucose Metabolism in Adult Offspring. Diabetes 67:2530-2540
Schuster, Cornelia; Jonas, Franziska; Zhao, Fangzhu et al. (2018) Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. Eur J Immunol 48:1211-1216
Lynes, Matthew D; Shamsi, Farnaz; Sustarsic, Elahu Gosney et al. (2018) Cold-Activated Lipid Dynamics in Adipose Tissue Highlights a Role for Cardiolipin in Thermogenic Metabolism. Cell Rep 24:781-790
Bhattacharya, Asmita; Sun, Shengyi; Wang, Heting et al. (2018) Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J 37:

Showing the most recent 10 out of 1120 publications