Induced pluripotent stem cells (IPS cells), generated by transcription factor-dependent nuclear reprogramming of differentiated somatic cells, are pluripotent stem cell lines that can be propagated indefinitely in culture and maintain the potential to differentiate into any cell type in the body. As iPS cells retain the same genetic make-up as the somatic cell targeted for reprogramming, these cells hold tremendous promise for uncovering novel genetic and biochemical factors that underiie diseases with complex and pooriy understood genetic influences, such as diabetes. The DRC iPS Core will establish and maintain a centralized facility for the reliable and consistent generation and propagation of reprogrammed IPS cells for use in cutting-edge research into the molecular and cellular pathologies underiying diabetes and its complications. The Core will enhance the scientific productivity of DRC projects in multiple ways: (1) By standardizing medical assessments and data collection from human subjects, as well as cell isolation protocols and reagents, the Core will allow direct comparison of data across projects and remove variability resulting from potential technical or biological differences in patient populations or cell handling. (2) As IPS cell production and propagation can be technically challenging, the Core will ensure reproducibility and comparability of results, by enforcing rigorous standards of quality control. (3) The Core will provide advanced training for investigators desiring to introduce IPS technologies into their own laboratories, increasing the currently small number of laboratories in the Boston area skilled in the isolation and culture of IPS cells. (4) The Core will provide expert advice on experimental design, regulatory documentation and interpretation of results, based on the extensive expertise of the Core Directors and Staff. (5) As the Core will be utilized by multiple labs, it will provide a venue for scientific interaction, fostering greater exchange of information among DRC Investigators and promoting productive collaborations with other Boston-based research groups. (6) The Core will help to develop new technologies that support center activities, including most notably the optimization of methods for deriving iPS cells from people with diabetes and the integration of new reprogramming technologies, including integration-free IPS generation and generation ofiPS cells from peripheral blood samples, as these become robust and available. These activities will benefit DRC Investigators and significantly accelerate advances in diabetes research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-28
Application #
8725127
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
28
Fiscal Year
2014
Total Cost
$182,281
Indirect Cost
$62,950
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Lynes, Matthew D; Shamsi, Farnaz; Sustarsic, Elahu Gosney et al. (2018) Cold-Activated Lipid Dynamics in Adipose Tissue Highlights a Role for Cardiolipin in Thermogenic Metabolism. Cell Rep 24:781-790
Schuster, Cornelia; Jonas, Franziska; Zhao, Fangzhu et al. (2018) Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. Eur J Immunol 48:1211-1216
Laguna Sanz, Alejandro J; Mulla, Christopher M; Fowler, Kristen M et al. (2018) Design and Clinical Evaluation of a Novel Low-Glucose Prediction Algorithm with Mini-Dose Stable Glucagon Delivery in Post-Bariatric Hypoglycemia. Diabetes Technol Ther 20:127-139
Bhattacharya, Asmita; Sun, Shengyi; Wang, Heting et al. (2018) Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J 37:
Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob et al. (2018) Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cell Signal 47:1-15
Cai, Weikang; Xue, Chang; Sakaguchi, Masaji et al. (2018) Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest 128:2914-2926
Nowak, Natalia; Skupien, Jan; Smiles, Adam M et al. (2018) Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int 93:1198-1206
Aguayo-Mazzucato, Cristina; Lee Jr, Terence B; Matzko, Michelle et al. (2018) T3 Induces Both Markers of Maturation and Aging in Pancreatic ?-Cells. Diabetes 67:1322-1331
Bartelt, Alexander; Widenmaier, Scott B; Schlein, Christian et al. (2018) Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24:292-303
Fujisaka, Shiho; Avila-Pacheco, Julian; Soto, Marion et al. (2018) Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep 22:3072-3086

Showing the most recent 10 out of 1120 publications