CORE 3 - CLINICAL TRANSLATIONAL RESEARCH CORE (CTRC): ABSTRACT The objective of the Clinical Translational Research Core (CTRC) is to facilitate high-quality clinical translational research specifically applicable to the understanding, prevention and treatment of diabetes, its complications, and related metabolic disorders. Research supported by the CTRC will leverage use of core facilities and faculty with expertise in a broad range in clinical research methods, from proof of concept and physiology, to clinical trials or comparative effectiveness studies to support the more than 35 Principal Investigators doing clinical research at Joslin. The CTRC will support the bi-directional journey of discovery from molecule, to model, to man, and back, while serving as the bridge between clinical observation, bench, and human investigation in adult and pediatric patients. Joslin has invested in new facilities for the Clinical Research Center which will serve as the infrastructure for the new DRC core. These facilities include exercise training and testing capacities, infusion and procedure rooms for adult and pediatric volunteers, and laboratory processing and biobanking facilities for valuable human specimens. We have well-trained nursing and technical staff to perform gold standard euglycemic, hyperglycemic, and hypoglycemic clamps at physiologic or pharmacologic insulin concentrations; intravenous and oral glucose and mixed meal tolerance tests; and other metabolic testing to assess insulin secretion, insulin action, and other metabolic processes for patient centered research specific to diabetes.
Specific aims of the new core are to 1) enable proof-of-concept and first-in-man ?T1? translational research programs with specific focus on Prediction, Prevention, and Interdiction of type 1 (T1DM) and type 2 diabetes (T2DM) and related complications; 2) facilitate design, implementation, and evaluation of investigator-initiated clinical trials and observational studies for translation to patients in ?T2-T3? research programs focused on improving and optimizing treatments of T1DM or T2DM and related complications; and 3) generate and maintain a registry of and a diabetes-specific biorepository of samples from our unique Joslin cohorts of patients with unusual phenotypes that have been extensively characterized. To achieve these aims the CTRC will provide an integrated and efficient core to support collaborative, multidisciplinary diabetes clinical research with services that include: a) consultation services, training, and mentoring of Investigators and fellows in methods and regulatory processes specific to human investigation; b) expert professional and technical help in the development and execution of protocols specific to diabetes and the complex assessments of glycemia, insulin secretion, insulin action, and exercise; c) support for biospecimen samples and data management; and d) guidance for analysis and interpretation of data and findings. Training will be an important component of the core supporting fellows and both new and established investigators. Together, these new initiatives will facilitate the translation of seminal observations and discoveries (which may begin at bench or bedside) into new diabetes cures or therapeutic opportunities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK036836-31
Application #
9318913
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2017-07-01
Budget End
2018-03-31
Support Year
31
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Rezanejad, Habib; Ouziel-Yahalom, Limor; Keyzer, Charlotte A et al. (2018) Heterogeneity of SOX9 and HNF1? in Pancreatic Ducts Is Dynamic. Stem Cell Reports 10:725-738
Katz, Michelle L; Guo, Zijing; Cheema, Alina et al. (2018) Management of Cardiovascular Disease Risk in Teens with Type 1 Diabetes: Perspectives of Teens With and Without Dyslipidemia and Parents. Pediatr Diabetes :
Gordin, Daniel; Harjutsalo, Valma; Tinsley, Liane et al. (2018) Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care 41:815-822
Teló, G H; Dougher, C E; Volkening, L K et al. (2018) Predictors of changing insulin dose requirements and glycaemic control in children, adolescents and young adults with Type 1 diabetes. Diabet Med 35:1355-1363
Srinivasan, Shylaja; Kaur, Varinderpal; Chamarthi, Bindu et al. (2018) TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care 41:554-561
Goldford, Joshua E; Lu, Nanxi; Baji?, Djordje et al. (2018) Emergent simplicity in microbial community assembly. Science 361:469-474
Soto, Marion; Orliaguet, Lucie; Reyzer, Michelle L et al. (2018) Pyruvate induces torpor in obese mice. Proc Natl Acad Sci U S A 115:810-815
Karst, Sonja G; Lammer, Jan; Radwan, Salma H et al. (2018) Characterization of In Vivo Retinal Lesions of Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Int J Endocrinol 2018:7492946
Espeland, Mark A; Carmichael, Owen; Hayden, Kathleen et al. (2018) Long-term Impact of Weight Loss Intervention on Changes in Cognitive Function: Exploratory Analyses from the Action for Health in Diabetes Randomized Controlled Clinical Trial. J Gerontol A Biol Sci Med Sci 73:484-491
Kim, Youngjo; Bayona, Princess Wendy; Kim, Miri et al. (2018) Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front Immunol 9:696

Showing the most recent 10 out of 1120 publications