CORE 5 - GENOME EDITING CORE: ABSTRACT Investigating mechanisms that underlie diabetes and its complications requires relevant experimental models. In recent years, induced pluripotent stem (iPS) cells have provided a unique means to study disease-relevant molecular pathways in patient-specific cells. The development of genome editing tools such as the CRISPR- Cas9 system has made it possible to accurately engineer cells and further refine disease modeling using iPS cells. Studies of iPS-derived cells are invaluable to the modeling of human cellular defects. However, cell- based experiments do not adequately reflect systemic changes associated with diabetes. Animal models are equally important and necessary to complement in vitro experimentation. Genome editing techniques have also made it possible to very quickly and efficiently generate new diabetes-relevant mouse models to interrogate mechanisms of disease. The Genome Editing Core (GEC) will provide a platform for investigators to create novel and unique human cellular models and mouse models to study diabetes and its complications. The GEC will use state-of-the-art methodology to 1) generate patient-specific iPS cell lines, 2) edit the genome of iPS and iPS-derived cells to probe individual genes or gene variants and 3) generate custom mouse models by gene knockdown, knock-in, knock-out or replacement. In addition to providing these services, the GEC will offer advice, reagents and tools for genome editing of experimental models and offer training for the generation and manipulation of iPS cell lines. In collaboration with the newly proposed Clinical Translational Research Core, the GEC will also serve as a repository for a large collection of unique iPS cell lines derived from type 1 diabetes, type 2 diabetes and MODY patients sourced from Joslin's extensive patient population. In sum, the GEC will constitute an invaluable resource for all aspects of diabetes research by facilitating the custom generation of relevant model systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-34
Application #
9921399
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
34
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Sustarsic, Elahu G; Ma, Tao; Lynes, Matthew D et al. (2018) Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metab 28:159-174.e11
Karatepe, Kutay; Zhu, Haiyan; Zhang, Xiaoyu et al. (2018) Proteinase 3 Limits the Number of Hematopoietic Stem and Progenitor Cells in Murine Bone Marrow. Stem Cell Reports 11:1092-1105
Cardamone, Maria Dafne; Tanasa, Bogdan; Cederquist, Carly T et al. (2018) Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 69:757-772.e7
Lessard, Sarah J; MacDonald, Tara L; Pathak, Prerana et al. (2018) JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat Commun 9:3030
Stanford, Kristin I; Lynes, Matthew D; Takahashi, Hirokazu et al. (2018) 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab 27:1111-1120.e3
Solheim, Marie H; Winnay, Jonathon N; Batista, Thiago M et al. (2018) Mice Carrying a Dominant-Negative Human PI3K Mutation Are Protected From Obesity and Hepatic Steatosis but Not Diabetes. Diabetes 67:1297-1309
Weir, Gordon C; Ehlers, Mario R; Harris, Kristina M et al. (2018) Alpha-1 antitrypsin treatment of new-onset type 1 diabetes: An open-label, phase I clinical trial (RETAIN) to assess safety and pharmacokinetics. Pediatr Diabetes 19:945-954
McGill, Dayna E; Volkening, Lisa K; Butler, Deborah A et al. (2018) Baseline Psychosocial Characteristics Predict Frequency of Continuous Glucose Monitoring in Youth with Type 1 Diabetes. Diabetes Technol Ther 20:434-439
Adachi, Yusuke; De Sousa-Coelho, Ana Luisa; Harata, Ikue et al. (2018) l-Alanine activates hepatic AMP-activated protein kinase and modulates systemic glucose metabolism. Mol Metab 17:61-70
Qi, Weier; Li, Qian; Gordin, Daniel et al. (2018) Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism. J Mol Med (Berl) 96:373-381

Showing the most recent 10 out of 1120 publications