CORE 5 - GENOME EDITING CORE: ABSTRACT Investigating mechanisms that underlie diabetes and its complications requires relevant experimental models. In recent years, induced pluripotent stem (iPS) cells have provided a unique means to study disease-relevant molecular pathways in patient-specific cells. The development of genome editing tools such as the CRISPR- Cas9 system has made it possible to accurately engineer cells and further refine disease modeling using iPS cells. Studies of iPS-derived cells are invaluable to the modeling of human cellular defects. However, cell- based experiments do not adequately reflect systemic changes associated with diabetes. Animal models are equally important and necessary to complement in vitro experimentation. Genome editing techniques have also made it possible to very quickly and efficiently generate new diabetes-relevant mouse models to interrogate mechanisms of disease. The Genome Editing Core (GEC) will provide a platform for investigators to create novel and unique human cellular models and mouse models to study diabetes and its complications. The GEC will use state-of-the-art methodology to 1) generate patient-specific iPS cell lines, 2) edit the genome of iPS and iPS-derived cells to probe individual genes or gene variants and 3) generate custom mouse models by gene knockdown, knock-in, knock-out or replacement. In addition to providing these services, the GEC will offer advice, reagents and tools for genome editing of experimental models and offer training for the generation and manipulation of iPS cell lines. In collaboration with the newly proposed Clinical Translational Research Core, the GEC will also serve as a repository for a large collection of unique iPS cell lines derived from type 1 diabetes, type 2 diabetes and MODY patients sourced from Joslin's extensive patient population. In sum, the GEC will constitute an invaluable resource for all aspects of diabetes research by facilitating the custom generation of relevant model systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK036836-34
Application #
9921399
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
34
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Rezanejad, Habib; Ouziel-Yahalom, Limor; Keyzer, Charlotte A et al. (2018) Heterogeneity of SOX9 and HNF1? in Pancreatic Ducts Is Dynamic. Stem Cell Reports 10:725-738
Katz, Michelle L; Guo, Zijing; Cheema, Alina et al. (2018) Management of Cardiovascular Disease Risk in Teens with Type 1 Diabetes: Perspectives of Teens With and Without Dyslipidemia and Parents. Pediatr Diabetes :
Gordin, Daniel; Harjutsalo, Valma; Tinsley, Liane et al. (2018) Differential Association of Microvascular Attributions With Cardiovascular Disease in Patients With Long Duration of Type 1 Diabetes. Diabetes Care 41:815-822
Teló, G H; Dougher, C E; Volkening, L K et al. (2018) Predictors of changing insulin dose requirements and glycaemic control in children, adolescents and young adults with Type 1 diabetes. Diabet Med 35:1355-1363
Srinivasan, Shylaja; Kaur, Varinderpal; Chamarthi, Bindu et al. (2018) TCF7L2 Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care 41:554-561
Goldford, Joshua E; Lu, Nanxi; Baji?, Djordje et al. (2018) Emergent simplicity in microbial community assembly. Science 361:469-474
Soto, Marion; Orliaguet, Lucie; Reyzer, Michelle L et al. (2018) Pyruvate induces torpor in obese mice. Proc Natl Acad Sci U S A 115:810-815
Karst, Sonja G; Lammer, Jan; Radwan, Salma H et al. (2018) Characterization of In Vivo Retinal Lesions of Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Int J Endocrinol 2018:7492946
Espeland, Mark A; Carmichael, Owen; Hayden, Kathleen et al. (2018) Long-term Impact of Weight Loss Intervention on Changes in Cognitive Function: Exploratory Analyses from the Action for Health in Diabetes Randomized Controlled Clinical Trial. J Gerontol A Biol Sci Med Sci 73:484-491
Kim, Youngjo; Bayona, Princess Wendy; Kim, Miri et al. (2018) Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front Immunol 9:696

Showing the most recent 10 out of 1120 publications