application) The mission of the Human Studies Core is to provide shared resources, personnel, services, education, and consultation to CURE investigators, trainees, and their collaborators for the study of patients with selected digestive diseases. The primary goal of this core is to facilitate collaboration, education about, and performance of GI clinical trials, human physiological studies, and health service studies in digestive diseases. The traditional focus of the core has been the investigation of peptic diseases and upper GI physiology, including secretion, motility, and hormonal regulation. This focus has been broadened to include the study of other important gastrointestinal illnesses such as complicated ulcer disease, gastroesophageal reflux disease (GERD), Barrett's epithelium, GI hemorrhage, non-ulcer dyspepsia, Helicobacter pylori infection, pre-cancer conditions (gastritis, polyposis, and ulcerative colitis), and inflammatory bowel disease. An overriding theme of the core is the study of the physiology of visceral pain which may be associated with all of these disorders. The importance of this area in GI diseases is highlighted by the impact of GI symptoms on quality of life and demand for health care services. With this in mind, the core has greatly expanded the study of neuroenteric diseases such as irritable bowel syndrome (IBS), non-ulcer dyspepsia, and non-cardiac chest pain. The specific goals of this core are to provide CURE investigators, trainees, and their collaborators with access to: (1) a quality clinical research unit for performance of GI clinical research at a low cost, (2) utilization of fully equipped endoscopy units for GI clinical and physiologic research studies, (3) laboratory services for GI secretory tests, GI motility and pH testing, and H. pylori assessments (ELISA, C-14 breath testing, and histopathology), (4) teaching of clinical research techniques and consultation about study design, data management, statistical analysis, and routine outcomes, (5) tissue and clinical data banks of patients with selected GI diseases (the largest data bases are for GI hemorrhage and functional GI disease), (6) consultation about conducting health services research including design of studies, cost assessments, quality of life instruments, effectiveness studies, and modeling cost-effectiveness studies, (7) specialized equipment for GI studies (such as equipment for ablating Barrett's epithelium or endoscopic ultrasound instruments), (8) psychophysiology and GI motility laboratories for the study of neuroenteric diseases, and (9) utilization of a brain imaging unit for the study of neuroenteric diseases. The instruments and personnel required for these services and functions are expensive, so that sharing them among various investigators in a core is cost effective and promotes collaboration.

Project Start
2000-06-01
Project End
2000-11-30
Budget Start
Budget End
Support Year
11
Fiscal Year
2000
Total Cost
$293,334
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Bonfiglio, Ferdinando; Zheng, Tenghao; Garcia-Etxebarria, Koldo et al. (2018) Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology 155:168-179
Hoffman, Jill M; Sideri, Aristea; Ruiz, Jonathan J et al. (2018) Mesenteric Adipose-derived Stromal Cells From Crohn's Disease Patients Induce Protective Effects in Colonic Epithelial Cells and Mice With Colitis. Cell Mol Gastroenterol Hepatol 6:1-16
Kageyama, Shoichi; Nakamura, Kojiro; Fujii, Takehiro et al. (2018) Recombinant relaxin protects liver transplants from ischemia damage by hepatocyte glucocorticoid receptor: From bench-to-bedside. Hepatology 68:258-273
Wen, Yi; Scott, David R; Vagin, Olga et al. (2018) Measurement of Internal pH in Helicobacter pylori by Using Green Fluorescent Protein Fluorimetry. J Bacteriol 200:
Koon, Hon Wai; Wang, Jiani; Mussatto, Caroline C et al. (2018) Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-?B Activity. Antimicrob Agents Chemother 62:
Wang, Jiani; Ghali, Sally; Xu, Chunlan et al. (2018) Ceragenin CSA13 Reduces Clostridium difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Gastroenterology 154:1737-1750
Manatsathit, Wuttiporn; Khrucharoen, Usah; Jensen, Dennis M et al. (2018) Laparotomy and intraoperative enteroscopy for obscure gastrointestinal bleeding before and after the era of video capsule endoscopy and deep enteroscopy: A tertiary center experience. Am J Surg 215:603-609
Rankin, Carl Robert; Theodorou, Evangelos; Man Law, Ivy Ka et al. (2018) Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 315:G722-G733
Park, S H; Naliboff, B D; Shih, W et al. (2018) Resilience is decreased in irritable bowel syndrome and associated with symptoms and cortisol response. Neurogastroenterol Motil 30:
Dong, Tien; Pisegna, Joseph (2018) Passing the ""Acid Test"": Do Proton Pump Inhibitors Affect the Composition of the Microbiome? Dig Dis Sci :

Showing the most recent 10 out of 1097 publications