Since the founding of CURE by Dr. Morton I. Grosssman in 1973, a strong tradition of expertise has existed for exploring the physiological mechanisms involved in the regulation of GI function under normal and pathological conditions, as recently reviewed by the Animal Models Core Co-Director (1). In the past two decades, tremendous increases in knowledge derived from cell and molecular biological approaches have driven interest to evaluate in vitro findings within the context of integrative physiological models. Conversely, observations derived from the role of specific endogenous hormones or transmitters in the regulation of normal or abnormal GI functions in in vivo models have provided the impetus for focused mechanistic evaluation at the cellular level using molecular biological methods. Indeed, a common theme in many of the research programs of the Center investigators is the elucidation of the pathophysiological role and molecular mechanism of action of gastrointestinal peptide hormones, neuropeptides, paracrine regulators and classical neurotransmitters. Thus, in vivo studies are important for the implementation of many research programs of CURE: DDRCC members to: 1. Assess the biological significance of mechanisms elucidated in vitro; 2. Dissect the neural, hormonal and paracrine mechanisms involved in integrated physiological regulation of GI function; 3. Test biological activity of new reagents (i.e., antibodies, selective receptor agonists or antagonists or novel peptides); 4. Establish relevant models of GI diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-25
Application #
8578090
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
25
Fiscal Year
2014
Total Cost
$95,565
Indirect Cost
$21,121
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Olson, Christine A; Vuong, Helen E; Yano, Jessica M et al. (2018) The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 173:1728-1741.e13
Martin, Clair R; Osadchiy, Vadim; Kalani, Amir et al. (2018) The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 6:133-148
Ehrlich, Dean; Jamaluddin, Nimah; Pisegna, Joseph et al. (2018) A Challenging Case of Severe Ulcerative Colitis following the Initiation of Secukinumab for Ankylosing Spondylitis. Case Rep Gastrointest Med 2018:9679287
Addante, Raymond; Naliboff, Bruce; Shih, Wendy et al. (2018) Predictors of Health-related Quality of Life in Irritable Bowel Syndrome Patients Compared With Healthy Individuals. J Clin Gastroenterol :
Chen, Wenling; Taché, Yvette; Marvizón, Juan Carlos (2018) Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 381:149-158
Gupta, Arpana; Woodworth, Davis C; Ellingson, Benjamin M et al. (2018) Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. J Pain 19:528.e1-528.e15
Marcus, Elizabeth A; Sachs, George; Scott, David R (2018) Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 23:e12490
Ziyad, Safiyyah; Riordan, Jesse D; Cavanaugh, Ann M et al. (2018) A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 22:1211-1224
Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia et al. (2018) Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology 154:689-703
Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping et al. (2018) Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. Am J Transplant 18:1096-1109

Showing the most recent 10 out of 1097 publications