The overall goal of the Imaging and Stem Cell Biology Core is to enhance the effectiveness of the CURE: DDRCC program by providing cost effective services through centralized resources and facilities, and training and assistance for the application of morphological, imaging and stem cell biology technologies as well as promoting collaborations among CURE:DDRCC investigators with independently-funded research projects requiring these approaches.
The specific aims are 1) To provide training and expertise for the visualization of chemical messengers and proteins and characterization of phenotypical aspects of genetically engineered mice; 2) To provide training, assistance and access to state-of-the-art equipment for an array of contemporary imaging approaches that have a broad application in cell biology and neurobiology; and 3) To provide training, facilities and expertise for the preparation and isolation of human and murine intestinal stem cell, and to generate 3D in vitro culture systems that can be used to help model human epithelial and smooth muscle disorders. The Imaging and Stem Cell Biology Core services range from morphological and imaging approaches, which include immunohistochemistry, light microscopy, digital photography, image analysis, confocal microscopy, fluorescence analysis of living cells (Ca2+ imaging, photoactivatable proteins and biological biosensors tagged with fluorescent proteins), quantum dot nanotechnology, bioluminescence resonance energy transfer, mouse pathology, and antibodies central bank to stem cell biology. This includes isolation and in vitro culture methods of human and murine intestinal epithelium, in vitro retroviral transduction methods, generation and use of patient-specific pluripotent stem : cell and intestinal stem cell sorting, division and differentiation methods. The core services will be instrumental for studies aimed at elucidating the tissue and cellular distribution of signaling molecules that play a role in the control of Gl functions and in the pathogenesis of Gl disorders, visualizing signaling pathways that regulate cellular functions, and the generation of intestinal glands from embryonic murine and human stem cells to elucidate the mechanisms underlying the development of epithelial cell disorders

Public Health Relevance

The availability of state-of-the-art equipment and resources for sophisticated imaging approaches and of technologies to isolate stem cells and induce enteroendocrine differentiation in vitro, has a significant impact on the Center program by allowing investigations of cellular processes and signaling mechanisms regulating Gl functions and of the molecular basis of Gl disorders, critical for advanced diagnosis and efficient therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-30
Application #
9605775
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2020-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
30
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Olson, Christine A; Vuong, Helen E; Yano, Jessica M et al. (2018) The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell 173:1728-1741.e13
Martin, Clair R; Osadchiy, Vadim; Kalani, Amir et al. (2018) The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 6:133-148
Ehrlich, Dean; Jamaluddin, Nimah; Pisegna, Joseph et al. (2018) A Challenging Case of Severe Ulcerative Colitis following the Initiation of Secukinumab for Ankylosing Spondylitis. Case Rep Gastrointest Med 2018:9679287
Addante, Raymond; Naliboff, Bruce; Shih, Wendy et al. (2018) Predictors of Health-related Quality of Life in Irritable Bowel Syndrome Patients Compared With Healthy Individuals. J Clin Gastroenterol :
Chen, Wenling; Taché, Yvette; Marvizón, Juan Carlos (2018) Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 381:149-158
Gupta, Arpana; Woodworth, Davis C; Ellingson, Benjamin M et al. (2018) Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. J Pain 19:528.e1-528.e15
Marcus, Elizabeth A; Sachs, George; Scott, David R (2018) Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 23:e12490
Ziyad, Safiyyah; Riordan, Jesse D; Cavanaugh, Ann M et al. (2018) A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 22:1211-1224
Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia et al. (2018) Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology 154:689-703
Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping et al. (2018) Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. Am J Transplant 18:1096-1109

Showing the most recent 10 out of 1097 publications