application) The major objective of the Molecular Biology Core over the past funding period has been to provide users direct access to recombinant DNA methodology. This general objective has been fully achieved, as documented by the productivity and scope of the interactions fostered by the Core. Specific examples of this technology transfer and its impact on the professional development of Core users are detailed below. In the current proposal, several additional objectives have been added to facilitate and accelerate the application of basic laboratory methods to the understanding of human gastrointestinal function in health and disease. First, the Core will now provide training and direct services in a variety of specialized molecular techniques. Secondly, state of the art genetic engineering of both somatic and embryonic stem (ES) cell lines, as well as transgenic technology will become available to Core users. Thirdly, the Core will provide access to human tissues, genetic analysis of these tissues, and a variety of adjunctive services to facilitate translational research. These expanded services will ensure that the most state-of-the-art methodologies and biologic approaches are available to users of the core. The increased breadth of services warrant a change of title from the Molecular Biology Core to the Molecular Medicine Core. This title change is also most consonant with the greater relevance of the Core services and of gastrointestinal research in general to human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK042086-11
Application #
6535445
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1990-01-01
Project End
2005-11-30
Budget Start
Budget End
Support Year
11
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Amin, Ruhul; Asplin, John; Jung, Daniel et al. (2018) Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney Int 93:1098-1107
Miyoshi, Jun; Nobutani, Kentaro; Musch, Mark W et al. (2018) Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100). Evid Based Complement Alternat Med 2018:7415975
Lu, Jing; Lu, Lei; Yu, Yueyue et al. (2018) Effects of Intestinal Microbiota on Brain Development in Humanized Gnotobiotic Mice. Sci Rep 8:5443
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Chen, Edmund B; Cason, Cori; Gilbert, Jack A et al. (2018) Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. J Gastrointest Surg 22:1112-1123
Chew, Justin; Leypunskiy, Eugene; Lin, Jenny et al. (2018) High protein copy number is required to suppress stochasticity in the cyanobacterial circadian clock. Nat Commun 9:3004
Ruderman, Sarah; Eshein, Adam; Valuckaite, Vesta et al. (2018) Early increase in blood supply (EIBS) is associated with tumor risk in the Azoxymethane model of colon cancer. BMC Cancer 18:814
Dugas, Lara R; Lie, Louise; Plange-Rhule, Jacob et al. (2018) Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public Health 18:978
McIntosh, Christine M; Chen, Luqiu; Shaiber, Alon et al. (2018) Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6:96
Overstreet, A M; LaTorre, D L; Abernathy-Close, L et al. (2018) The JAK inhibitor ruxolitinib reduces inflammation in an ILC3-independent model of innate immune colitis. Mucosal Immunol 11:1454-1465

Showing the most recent 10 out of 697 publications