The Host-Microbe Core (HMC) has evolved from the original Cell Biology core which was intended to help DDRCC members study cell structure and function. This change coincided with the decision of past funding cycle to intensify the DDRCC focus on IBD and IBD-related fields. In this regard, the study of the enteric microbiome and host-microbe interactions has come to the forefront of IBD research because of the increasing realization that it is a caused by an unfortunate combination of potentially disease-promoting commensal bacterial on a background of host genetic susceptibility. The development of the Host-Microbe core was therefore timely because it anticipated the growing needs of our investigators to better understand the complex interactions between host and gut microbes. Two of three original components of the Cell Biology Core were changed. Only the Cell/Tissue Systems component, which provides cells and cell-based systems for elucidation of mechanisms mediating cell-cell relationships, was retained. Most of the cell physiology component, including patch-clamp electrophysiology, was removed largely because of declining usage. The structural biology component was moved to the Tissue and Cell Analysis Core where all light and digital imaging technologies now reside. In their place, the gnotobiotic and enteric microbiology components have been added which provide new opportunities for investigators to comprehensively study host-microbe interactions. Both components incorporate new technologies, experimental models, and expertise that bear on the study of healthy gut as well as inflammatory bowel diseases and related disorders. Together, the components have significantly advanced the capabilities of our DDRCC investigators to study fundamental questions in human-based and experimental research. The Administrative Director of the HMC, Dr. Eugene Chang, oversees the operations of all components and also serves as the Director of the Cell/Tissue Systems component. Drs. Antonopoulos and Chervonsky direct the Enteric Microbiology and Gnotobiotic components, respectively. Directors are responsible for insuring proper scientific direction and the integration and efficient use of services and facilities of their respective components. In summary, the HMC is the most heavily used Core of the DDRCC. It has enabled our investigators to study previously unexplored aspects of host-microbial interactions, using a variety of cutting edge approaches that span from reductionist systems to in vivo models. The HMC is also vital to the translational research effort at the University of Chicago that has become prominent in the area of IBD.

Public Health Relevance

The study of the host-microbe interactions is essential for understanding the cause of IBD because of the increasing realization that this disease results from an unfortunate combination of disease-promoting colonic bacteria on a background of host genetic susceptibility. The Host-Microbe core provides our investigators with advanced technologies and cost-effective services to address complex questions of IBD pathogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK042086-24
Application #
8575328
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
24
Fiscal Year
2014
Total Cost
$281,948
Indirect Cost
$101,212
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Johnson, Carl D; Barlow-Anacker, Amanda J; Pierre, Joseph F et al. (2018) Deletion of choline acetyltransferase in enteric neurons results in postnatal intestinal dysmotility and dysbiosis. FASEB J 32:4744-4752
Pierre, Joseph F; Hinterleitner, Reinhard; Bouziat, Romain et al. (2018) Dietary antioxidant micronutrients alter mucosal inflammatory risk in a murine model of genetic and microbial susceptibility. J Nutr Biochem 54:95-104
Williams Jr, James C; Borofsky, Michael S; Bledsoe, Sharon B et al. (2018) Papillary Ductal Plugging is a Mechanism for Early Stone Retention in Brushite Stone Disease. J Urol 199:186-192
Micic, Dejan; Yarur, Andres; Gonsalves, Alex et al. (2018) Risk Factors for Clostridium difficile Isolation in Inflammatory Bowel Disease: A Prospective Study. Dig Dis Sci 63:1016-1024
Brown, Hailey M; Biering, Scott B; Zhu, Allen et al. (2018) Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases. Bioessays 40:e1700231
Lu, Lei; Claud, Erika C (2018) Intrauterine Inflammation, Epigenetics, and Microbiome Influences on Preterm Infant Health. Curr Pathobiol Rep 6:15-21
Lu, Jing; Synowiec, Sylvia; Lu, Lei et al. (2018) Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One 13:e0201829
Shiloh, Ruth; Gilad, Yuval; Ber, Yaara et al. (2018) Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy. Nat Commun 9:1759
Wang, Haitao; Cheng, Minying; Dsouza, Melissa et al. (2018) Soil Bacterial Diversity Is Associated with Human Population Density in Urban Greenspaces. Environ Sci Technol 52:5115-5124
Khambu, Bilon; Huda, Nazmul; Chen, Xiaoyun et al. (2018) HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 128:2419-2435

Showing the most recent 10 out of 697 publications