The Tissue Engineering and Cell Models Core (TECM) enables Universtiy of Chicago (UChicago) Digestive Diseases Research Core Center (DDRCC) for Interdisciplinary Study of Inflammatory Intestinal Disorders (C- IID) investigators to address key questions relating to causality and mechanisms by providing novel and vetted experimental models that can be customized to their needs. It was established to replace the Genomics and Molecular Engineering (GME) Core of the C-IID. The reorganization of the Core was a direct result of two sequential annual needs assessments indicating strong interest by the membership for more physiologically- relevant experimental models to study digestive health and diseases. The TECM has three major components: (1) A centralized repository and facility for established and primary gut-relevant cell lines, which was originally part of the host-microbe core, but moved to the TECM to centralize all cell and tissue experimental systems, (2) A tissue engineering component that includes customizing and developing intestinal organoid technologies for specific applications needed by C-IID users, and (3) an experimental systems component that includes in vivo models (rodent microsurgery), ex vivo models, and live functional assays. Inherent to these services, the TECM provides training and education, opportunities for cost-savings through bulk purchases (serum, disposables, etc), and technical expertise that saves investigators time and ensure high quality of services. The TECM is inextricably tied to the other C-IID cores. The Integrative Clinical and Biospecimen (ICB) and the Host-Microbe (HM) cores are essential for providing cells, tissues, and patient samples for establishing the experimental models. The Multiparametric Host Cell Analysis (MHC) core provides investigators with the means to analyze data derived from the model systems. Thus, the TECM Core has had great impact in enabling C-IID members to advance knowledge in the thematic areas fostered by the C-IID which focus on the study of IBD, host-microbe interactions, mucosal immunology and inflammation. In the past funding cycle, it was used by ~80% of the C-IID membership and was used in 149 peer-reviewed publications or 46% of the total (322) C-IID acknowledged publications during this period. The TECM has promoted interaction, collaboration, cost-sharing, and efficient resources utilization, and, at the same time, has enhanced the capabilities of our investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK042086-31
Application #
10049114
Study Section
Special Emphasis Panel (ZDK1)
Project Start
1996-12-01
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
31
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Johnson, Carl D; Barlow-Anacker, Amanda J; Pierre, Joseph F et al. (2018) Deletion of choline acetyltransferase in enteric neurons results in postnatal intestinal dysmotility and dysbiosis. FASEB J 32:4744-4752
Pierre, Joseph F; Hinterleitner, Reinhard; Bouziat, Romain et al. (2018) Dietary antioxidant micronutrients alter mucosal inflammatory risk in a murine model of genetic and microbial susceptibility. J Nutr Biochem 54:95-104
Williams Jr, James C; Borofsky, Michael S; Bledsoe, Sharon B et al. (2018) Papillary Ductal Plugging is a Mechanism for Early Stone Retention in Brushite Stone Disease. J Urol 199:186-192
Micic, Dejan; Yarur, Andres; Gonsalves, Alex et al. (2018) Risk Factors for Clostridium difficile Isolation in Inflammatory Bowel Disease: A Prospective Study. Dig Dis Sci 63:1016-1024
Brown, Hailey M; Biering, Scott B; Zhu, Allen et al. (2018) Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases. Bioessays 40:e1700231
Lu, Lei; Claud, Erika C (2018) Intrauterine Inflammation, Epigenetics, and Microbiome Influences on Preterm Infant Health. Curr Pathobiol Rep 6:15-21
Lu, Jing; Synowiec, Sylvia; Lu, Lei et al. (2018) Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One 13:e0201829
Shiloh, Ruth; Gilad, Yuval; Ber, Yaara et al. (2018) Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy. Nat Commun 9:1759
Wang, Haitao; Cheng, Minying; Dsouza, Melissa et al. (2018) Soil Bacterial Diversity Is Associated with Human Population Density in Urban Greenspaces. Environ Sci Technol 52:5115-5124
Khambu, Bilon; Huda, Nazmul; Chen, Xiaoyun et al. (2018) HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 128:2419-2435

Showing the most recent 10 out of 697 publications