The Human Genetics and Microbiome Core will be co-directed by Mark Daly and Curtis Huttenhower. The services offered within this core are composed of a suite of services from more routine and heavily used molecular biology services (e.g., whole plasmid DNA sequencing) to computationally complex tools to analyze the role of genetics and the microbiome in IBD (e.g., statistical association testing between host genotypes and microbiome).Central to all services are formal and informal end-to-end consultations and training on experimental design, data generation, and bioinformatics analysis. A team of bioinformaticists and software developers with in-depth expertise are available within the Core to provide collaborative capacity for analysis of genetics, microbiome, and/or functional data This core will be a major connection point for clinicians and basic researchers, as it operates at the intersection between patient samples and basic research techniques.
The specific aims of Human Genetics and Microbiome Core are divided according to its two themes. For genetics, the Core will (1) facilitate the application of advanced experimental platforms for genetics, genomics, and high-throughput data analysis to discovery efforts relevant to IBD; (2) provide a centralized facility and personnel for performing state-of-the-art recombinant and PCR-based DNA procedures and RNA interference and provide cost-effective and high- quality molecular biology reagents and services; and (3) provide a resource for disseminating a wide range of molecular biology, genetic, and bioinformatics technologies. For microbiome services, the Core will (1) provide an end-to-end sampling and multi?omic profiling system for the host and microbiota in IBD and gastrointestinal disease; (2) provide computational resources to analyze and interpret the microbiome; and (3) develop cutting-edge solutions in microbiome research that will drive therapeutic discovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK043351-28
Application #
9399646
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
28
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Qu, Chen; Zheng, Dandan; Li, Sai et al. (2018) Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology :
Simon, Tracey G; King, Lindsay Y; Chong, Dawn Q et al. (2018) Diabetes, metabolic comorbidities, and risk of hepatocellular carcinoma: Results from two prospective cohort studies. Hepatology 67:1797-1806
Borren, Nienke Z; Conway, Grace; Garber, John J et al. (2018) Differences in Clinical Course, Genetics, and the Microbiome Between Familial and Sporadic Inflammatory Bowel Diseases. J Crohns Colitis 12:525-531
Battistone, Maria A; Nair, Anil V; Barton, Claire R et al. (2018) Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 29:545-556
Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan et al. (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108-119
Chandradas, Sajiv; Khalili, Hamed; Ananthakrishnan, Ashwin et al. (2018) Does Obesity Influence the Risk of Clostridium difficile Infection Among Patients with Ulcerative Colitis? Dig Dis Sci 63:2445-2450
Luther, Jay; Gala, Manish; Patel, Suraj J et al. (2018) Loss of Response to Anti-Tumor Necrosis Factor Alpha Therapy in Crohn's Disease Is Not Associated with Emergence of Novel Inflammatory Pathways. Dig Dis Sci 63:738-745
Graham, Daniel B; Luo, Chengwei; O'Connell, Daniel J et al. (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762-1772
Schirmer, Melanie; Franzosa, Eric A; Lloyd-Price, Jason et al. (2018) Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 3:337-346
Cheung, Pui W; Terlouw, Abby; Janssen, Sam Antoon et al. (2018) Inhibition of non-receptor tyrosine kinase Src induces phosphoserine 256-independent aquaporin-2 membrane accumulation. J Physiol :

Showing the most recent 10 out of 1166 publications