The Yale Diabetes Endocrinology Research Center was established in the spring of 1993 with the goal of promoting research in diabetes and related metabolic and endocrine disorders at the University. The Center brings together a multidisciplinary group of nearly 100 member scientists as well as professional supporting staff, new investigators and research trainees from the Departments of Internal Medicine, Pediatrics, Immunobiology, Biology, Cell Biology, Molecular Biophysics and Biochemistry, Bioengineering, Genetics, Molecular, Cellular and Developmental Biology, Physiology, Pharmacology, Surgery, Orthopedics, Neurosurgery, Neurology, Psychiatry, Obstetrics and Gynecology, Diagnostic Radiology, Psychology, Pathology, Laboratory Medicine, and from the Schools of Public Health and Nursing and the Pierce Laboratory. The scope of the research activities of the membership is very broad, ranging from basic molecular biology to whole body physiology and the treatment of diabetic patients. The members, however, share a common interest in research that is related to diabetes, endocrinology and metabolism or is fundamental to understanding its pathogenesis or for the development of new treatment strategies. The design of the Yale DERC is aimed at developing an infrastructure that could serve as a catalyst to stimulate innovative research. The cornerstone of the Center is its six Research Cores that provide funded basic and clinical investigators with the opportunity to more efficiently utilize resources and expand the scope of their research programs. The Clinical Metabolism and the new Diabetes Translational Cores facilitate metabolic research in patients, whereas the Molecular, Transgenic, Animal Genetics, Animal Physiology and Cell Biology Cores that comprise the Animal Resource Program offer investigators the tools to create and test novel animal models starting from the molecule and ending with biological outcomes. The Administrative Core oversees the operation of the Center, its Pilot/Feasibility Project and Enrichment Programs, and helps to coordinate patient-based research in diabetes. The goals of the DERC are to: 1) stimulate multidisciplinary interactions, particularly between basic and clinical scientists;2) efficiently organize time consuming and/or costly techniques through Core facilities to enhance the productivity of investigators conducting research in diabetes related areas;3) promote new research programs through pilot feasibility projects;4) enhance the quality of research training, and 5) create a stimulating institutional environment that enhances research efforts to develop new strategies to prevent and treat diabetes and related metabolic and endocrine disorders at the local and national level.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK045735-17
Application #
7590334
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O1))
Program Officer
Hyde, James F
Project Start
1997-01-01
Project End
2013-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
17
Fiscal Year
2009
Total Cost
$1,635,601
Indirect Cost
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Abulizi, Abudukadier; Camporez, João-Paulo; Zhang, Dongyan et al. (2018) Ectopic lipid deposition mediates insulin resistance in adipose specific 11?-Hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism :
Rash, Brian G; Micali, Nicola; Huttner, Anita J et al. (2018) Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proc Natl Acad Sci U S A 115:10142-10147
Kumar, Nikit; Leonzino, Marianna; Hancock-Cerutti, William et al. (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625-3639
Flannery, Clare A; Choe, Gina H; Cooke, Katherine M et al. (2018) Insulin Regulates Glycogen Synthesis in Human Endometrial Glands Through Increased GYS2. J Clin Endocrinol Metab 103:2843-2850
Benedetti, Lorena; Barentine, Andrew E S; Messa, Mirko et al. (2018) Light-activated protein interaction with high spatial subcellular confinement. Proc Natl Acad Sci U S A 115:E2238-E2245
Perry, Rachel J; Wang, Yongliang; Cline, Gary W et al. (2018) Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation. Cell 172:234-248.e17
Belfort-DeAguiar, Renata; Gallezot, Jean-Dominique; Hwang, Janice J et al. (2018) Noradrenergic Activity in the Human Brain: A Mechanism Supporting the Defense Against Hypoglycemia. J Clin Endocrinol Metab 103:2244-2252
Tricò, Domenico; Natali, Andrea; Mari, Andrea et al. (2018) Triglyceride-rich very low-density lipoproteins (VLDL) are independently associated with insulin secretion in a multiethnic cohort of adolescents. Diabetes Obes Metab 20:2905-2910
Vatner, Daniel F; Goedeke, Leigh; Camporez, Joao-Paulo G et al. (2018) Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia 61:1435-1446
Keene, Danya E; Guo, Monica; Murillo, Sascha (2018) ""That wasn't really a place to worry about diabetes"": Housing access and diabetes self-management among low-income adults. Soc Sci Med 197:71-77

Showing the most recent 10 out of 620 publications