ADMINISTRATIVE CORE ABSTRACT: The Yale Diabetes Research Center (DRC) was established in 1993 with the goal of promoting research in diabetes and related metabolic and endocrine disorders at the University. The DRC brings together a multidisciplinary group of more than 100 member and associate member scientists as well as professional supporting staff, new investigators and research trainees from in 16 departments and 4 colleges or schools at Yale University The scope of the research activities of the membership is very broad, ranging from basic molecular biology to whole body physiology and the treatment of diabetic patients. The members, however, share a common interest in research that is related to diabetes and disorders of metabolism or is fundamental to understanding its pathogenesis or for the development of new treatment strategies. The design of the Yale DRC is aimed at developing an infrastructure that could serve as a catalyst to stimulate innovative diabetes and metabolic-related research. The cornerstone of the DRC is its five Research Cores that provide funded basic and clinical investigators with the opportunity to more efficiently utilize resources and expand the scope of their research programs. The Metabolism and the Diabetes Translational Cores facilitate metabolic research in patients, whereas the Molecular Genetic Mouse Core, Physiology and Cell Biology Cores that comprise the more basic science focus of the Center offer investigators the tools to create and test novel animal models starting from the molecule and ending with biological outcomes. The Administrative Core oversees the operation of the Center, its Pilot/Feasibility Project and Enrichment Programs, and helps to coordinate patient-based research in diabetes. The goals of the DRC are to: 1) stimulate multidisciplinary interactions, particularly between basic and clinical scientists; 2) encourage established investigators not presently working in diabetes-related areas, to bring their expertise to bear on problems relevant to diabetes and metabolism; 3) efficiently organize time consuming and/or costly techniques through Core facilities to enhance the productivity of investigators conducting research in diabetes related areas; 4) promote new research programs through pilot feasibility projects; 5) enhance the quality of research training of future DRC members, and 6) create a stimulating institutional environment that enhances research efforts by its members to develop new strategies to prevent and treat diabetes and related metabolic disorders at the local and national level. Thus, the Yale DRC provides the infrastructure to support a wide spectrum of clinical and basic scientists who are working collaboratively understand why diabetes develops, and to translate discoveries from the bench to the bedside and ultimately to create new strategies for the prevention and treatment of patients with, or who are at risk for developing diabetes. The principle functions of the Administrative Core (Admin Core) are: A. Administrative and Financial Management B. Provision of Research Support Services C. Administration of the Pilot and Feasibility Project Program D. Provision of a Scientific Enrichment Program

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Qiu, Yang; Perry, Rachel J; Camporez, João-Paulo G et al. (2018) In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochem J 475:1063-1074
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2018) Publisher Correction: Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat Commun 9:498
Hu, Youjia; Peng, Jian; Li, Fangyong et al. (2018) Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Sci Rep 8:15451
Belfort-DeAguiar, Renata; Seo, Dongju (2018) Food Cues and Obesity: Overpowering Hormones and Energy Balance Regulation. Curr Obes Rep 7:122-129
Dong, Rui; Zhu, Ting; Benedetti, Lorena et al. (2018) The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J Cell Biol 217:3577-3592
Bian, Xin; Saheki, Yasunori; De Camilli, Pietro (2018) Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J 37:219-234
Jelenik, Tomas; Flögel, Ulrich; Álvarez-Hernández, Elisa et al. (2018) Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes 67:2695-2702
Barentine, Andrew E S; Schroeder, Lena K; Graff, Michael et al. (2018) Simultaneously Measuring Image Features and Resolution in Live-Cell STED Images. Biophys J 115:951-956
Goedeke, Leigh; Bates, Jamie; Vatner, Daniel F et al. (2018) Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. Hepatology 68:2197-2211
Sherr, Jennifer L (2018) Closing the Loop on Managing Youth With Type 1 Diabetes: Children Are Not Just Small Adults. Diabetes Care 41:1572-1578

Showing the most recent 10 out of 620 publications